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? ) PREFACE

Four years and five months have passed since I started this

research on May 1, 1977, and these were hectic years. During this

E. v ' period, so many things were designed and accomplished. Even 1f I

. am the principal investigator, I find it practically impossible to
include and systematize all the important findings and implications
within a single final report. I did my best within a limited amount

i of time, however. It is obvious that the present report should be
supplemented and revised further. I plan to do so and use the

result at the Advanced Seminar on Latent Trait Theory, which will )}

be held in spring, 1982, in the vicinity of Knoxville, Tennessee,

E under the sponsorship of the Office of Naval Research.

fae
e natlicel

There were four objectives in the original research proposal,

! and they can be summarized as follows.

o s el

[1] Investigation of theory and method for estimating the

operating characteristics of discrete item responses,

PR B )

without assuming any specific mathematical forms, and

without using too many examinees in the whole procedure.

[2] Investigation of the speed factor working in combination

P - BT - . 2=}

with the power factor in intellectual performance.
i ! [3] Investigation of the random guessing behavior in testing,

and the development of a new model, or new models, for

Tl KN

i the multiple~choice item.

Sl s ar

i [4] 1Investigation of efficient methods of estimating the ability

distribution for any specific group of examinees.

Out of these four objectives, Objective [1], together with Objective
[4], was very intensively pursued. The highest productivity belongs y
to this part of the research. Objective [3] was also successfully i
.
1

pursued. It provided us with valuable future perspectives and

B e L S BV e A ke L Te STaA Y WA 1 [,
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directions of research. In contrast to these three, Objective [2]

was more or less dropped. To compensate for it, however, there were

{ several other topics pursued, such as a new mathematical model for
?' ' the binary item called Constant Information Model, the method of

b ‘ : moments as the least squares solution for fitting a polynouial,
Bayesian estimation of ability, and alternative estimators for the

: maximum likelihood estimator for the two extreme response patterns.
All of these additional topilcs are velated tc the proposed
objectives, but they alsc have the values of their own.

Recently, some researchers have started using the title,

; Item Response Theory, instead of Latent Trait Theory, the former
of which, I believe, was first proposed by Dr. Frederic M. Lord.

Although I have & great deal of respect for Dr. Lord for his long, ]

brilliant career as a regsearcher and scholar, I prefer Latent Trait

R e e

e

e

Theory. One of the reasons for my preferenpe is that 1 see no
reason why it should be changed, after so many years of presentations

T, - <

and publications of papers under the title of Latent Trait Theory,

| 2N |
e

which include my own paper presented at the Fifth Intermational
Symposium on Multivariate Analysis, and publimhed in Multivariate

i
Analysis V (Krishnaiah, Ed., 1978) as a chapter. I feel that the
change of the title would cause more confusion than anything else,

W T

[ g = X
.o

T ey

e

e,

[

not only among psychologists but also among mathematicians and
mathematical statisticians who have become familiar with the Theory.

SR s

Secondly, the term, Item Response Theotry, has been used mainly by

researchers whose interest is in the three-parameter logistic model
For the type of research such

. -\‘-.o-
ik il e it

in the uni-dimensional latent space.
as mine, which covers broader areas and even includes the multi-

dimensional latent space, Latent Trait Theory sounds more appropriate.
In the present report, therefore, Latent Trait Theory is exclusively

used for the general title, instead of Item Response Theory.

September 30, 1981

Author

s M" u . i
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I General Background

Latent Trait Theory can be traced back to the nineteen-fortiés, in
the work of Lawley (Lawley, 1943) and others. In the nineteen-fifties,
psychemetricians like Tucker and Lord developed the basic theory as a
mental test theory, and, among others, Lord integrated and published it
in a Psychometric Moncgraph (Lord, 1952). These early works by
ps ;crwometricians were joined by the latent structure analysis, which had
beea developed by Lazarsfeld (Lazarsfeld, 1959) and others as a theory
of social attitude measurement in the area of sociology, and also by the
work accomplished by Rasch (Rasch, 1960) in the context of mental \
measurement. These pioneer works led us to a comprehensive system 054}

the Latent Trait Theory.

7
n

The modern mental test theory thus established originally adopted
the normal oglve model for the conditional probability of the correct

answer, given ability, or the item characteristic function, of the

dichotomously scored test item. In the nineteen-sixties, Birnbaum (Birnbaum,
1968) proposed the logistic model, which is an approximation to the

normal ogive model with its benefit of mathematical simplicities caused

by a simple sufficient statistic for the vector of binary item scores,

or the response pattern. Birnbaum alsc proposed the three-parameter

logistic model for the multiple-choice test item, which is a modification

of the logistic model and is based upon the knowledge or random guessing
principle. Samejima (Samejima, 1969) expanded the theory to include
both the nominal and graded response levels, in addition to the

dichotomous response level, The graded response level assumes integers,

0 through mg (> 1) , for the item score, and is further classified
into two cases, the homogeneous case and the haterogeneous case
(Samejima, 1972). With this generalization, we needed more than a single
item characteristic function for a test item, and the conditional

probability, given ability, or the operating characteristic, of each of

the discrete responses to an item was introduced. Both the normal ogive
model and the logistic model were expanded for the homogeneous case of
the graded response level, which provide us with ordered, unimodal

operating characteristics for all the intermediate response categories.

T
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Sufficient conditions for a model to have a unique maximum of the
operating characteristic of each and every response pattern were
investigated and postulated. Bock (Bock, 1972) proposed a multinomial
response model, which can either be interpreted as a model on the nominal
response level or as a model in the heterogeneous case of the graded
response level., Samejima (Samejima, 1973) also proposed several models
on the continuous response level, defining the operating demsity
characteristic for each continuous item response, and, later (Samejima,

1974), she expanded it to the multi-dimensional latent space.

In contrast to the development of the theory, its applications
are still far behind. For one thing, the theory has not been well
understood and used by most applied researchers. Many psychologists
still bury themselves in the tautology of the classical mental test
theory, although it has been pointed out (Samejima, 1977) that such core
concepts in classical test theory as the reliability coefficient and the
validity coefficient of a test are highly irrelevant and misleading, anud

that the information functions in Latent Trait Theory provide us with a

far more relevant set of information.

In the past decade, Rasch model has become increasingly popular
The development of adaptive testing,

among certain applied researchers,
or tailored testing, has also made the three-parameter logistic model

popular among researchers of mental measurement. The gradual

popularities of these two models do not always depend upon the relevance

of these models, however. Researchers tend to choose one of those

models fairly arbitrarily, and because of its availability and easiness
in handling rather than their scientific convictions. The worst of all,

very little effort has been put upon the model validation, which is
essential in any scientific research.

The ovientation we aim at in the present study is quite different
from the general trends described in the preceding paragraph. We
consider ourselves slaves to the truth, rather than masiers who can
choose their models as they wish and for their own convenience. This

orientation leads us to the emphasis upon the elimination of as many
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assumptions as possible, and upon the model validation whenever we use
one. The author hopes that the present study will stimilate some of the
researchers following general trends to the extent that they wish to changx
their ways, following harder paths to reach the productivity of truly

scientific r ense.
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b I1I Research Reports

There are nineteen technical reports published during the coutract
period. All of them, except for three, were written by the primcipal
. investigator., The three technical reports, RR-79-2, RR-80-1 and
3 RR~81-3, were written under the coauthorship of the principal
investigator, and Philip Livingston, Robert Trestman and Paul
Changas, respectively. There is one Scientific Monograph published
by the Tokyo Office of the Office of Naval Research in 1980. There
are two papers in the proceedings of the Computerized Adaptive Testing
Conference, in 1977 and in 1979, respectively. The titles of these
twenty~two research reports are listed on the following pages.

N In addition to them, during the contract period, the principal

ﬂ investigator introduced some of the products and findings of the present ’
: research in an invited paper at the Fifth Intermational Symposium on ’
? Multivariate Analysis, which was held at the University of Pittsburgh,

5 in 1978. The title of the paper is Latent Trait Theory and Its

Applications, and was published in Multivariate Analysis V (Krishnaiah,
Ed.; North-Holland, 1980).

The twenty-two research reports can roughly be categorized into
seven groups, and, in the list, they are marked with different symbols . §
accordingly. There are eleven papers which are marked with A . All of
them concern with the estimation of the operating characteristics of
discrete item responses, and the estimation of the ability distribution,

Lo The method of moments as the least squares solution for fitting a

F ' polynomial is discussed in one paper, which i3 marked with 3 . There
' are two papers marked with V¥ , and they are concerning the new family
of models for the multiple-choice test item. There is one paper with
i the mark e , which is an empirical study concerning the multiple-choice i
E test item, and is related with the previous two. There are throe papers

E on the Constant Information Model, which is a new model proposed by the

principal investigator, and these papers are marked with ¢ in the list. f: ]

M Uiy il b sl i

A There are two papers on the computerized adaptive testing, and they are
%- ' marked with § . Partly related with these two, there are two papers

L VN
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which 1is marked with 1 .

The contents and the main findings of these papers will be
The reader will

integrated and summarized in the following chapters.
also find ocut how these seemingly separate topics are reiated, and
how we can use them together to accomplish useful research.

. .
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II1 Estimation of the Operating Characteristics of the Discrete Item
Responses and That of Ability Distributions: I

3 As we have seen in the preceding chapter, there are eleven papers
: ' ' written on these two subjects, and one paper on the method of moments

; ‘ which takes an important role in the methods and approaches for these
In the present chapter, we shall start integrating the

f‘ : estimations.
| . rationale, data and methods of this part of the research, and organize

them into several sections.

l .
) (I11.1) Relationship between the Estimation of the Operating '
Characteristics and that of Ability Distributions ]

By discrete item responses we mean any discrete answer to the
item, including both free responses and multiple-choice responses. When
are treated as they are, or mbre or less categorized
depending upon their mutual similarities, they provide us with nominal
responses. If we use a dichotomous scoring stategy by categorizing them

into two categories, i.e., "correct" and "Sncorrect", then they will be
If we adopt a more graded scoring

‘ treated as dichotomous responses.,
‘ strategy by categorizing them into more than two categories, i.e.,
for item g , depending upon their closeness to the correct
In each case, we

;
3

§

t

f

L

} : ]

I : .. free responses
?

L

]

]

i

' 0

A -

through mg
3 answer, then they will be treatcd as graded responses.

iR

have discrete item responses.,
Let 6 be ability, or latent trait, which assumes any real number,
£(8) be the Cinsity function of ability 6 for a given group of

T R e e m e e

e e iiital

5- f } Let

:‘ o ; : examinees. We danote the set of all the discrete responses to item g by

Y K K, and its element by kg or hg . Then the density function, £(8) , g
i

| can be written ae

(3.1) £(6) = I £, (®) p(kg) R

keK
g g &

where fk (8) 1s the density functionm of ability 6 for the subgroup
g

e D OGRStk acim e

of examinees whose responses to item g are uniformly k8 , and p(kg)
is the probability assigned to the subgroup within the tntal group of

examinees. We can write for the operating characteristie, Pk (8) , of
g L
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the discrete item response kg such that

(3.2) P (0) = £, () pk) [T £ (0) p)I™H,

hek
8 g g g g

Equation (3.2) indicates that the estimated operatiqag characteristic
of a discrete item response kg can be obtained by the ratio of its
estimated absolute frequency of ability to the absolute frequency for the
whole set, Kg . Throughout the present study, this ratio is the
estimated operating characteristic we adopt. Any method for estimating
the operating characteristics of discrete item responses includes,
therefore, the estimation of two or more ability distributions. In other
words, those methods and approaches developed in the present study are
not only for the estimation of the operating characteristics but also for
the estimation of ability distributions.

There 1s a certain invariance property in the estimated operating
characteristic over the transformation of the latent trait, which is not
shared by the estimated probability density of ability. Let T ba a
strictly increasing and differentiable function of 6 . We have for the
densities, f¥*(T) and fi (t) , for the transformed latent trait =T ,
such that 8

a8

(3.3) f*(T) - f(e) dt
and
46
(3.4) g =f 0,
g g

for any discrete response kgel(.g . From (3.2) and (3.4) 1t is obvious
that for the operating characteristic, Pi (1) , we have
g

(3.5) ¥ (1) = P, ® ,
g B -

which indicates the invariance of the estimated operating characteristic

over the transformation of the latent trait.

§ e g

: * e
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(IX1I.2) No Mathematical Forms Are Assumed for the Operating
Characteristics of the Unknown Test Items

" Most researchers preassume some mathematical mcdel for the

operating characteristics of the item responses of their unknown
test items. In such a casc, the estimation of the operating
characteristics is converted to the estimation of a small number of
This simplification will make it easy for us to

item parameters.
On the other hand, in so doing, we may

conduct our research.
distort the psychological reality, which is the very object of our

research, by molding it into some irrelevant model. Thus both the

deductive and inductive validations of the model are by far the most

important when we adopt any mathematical model. In other words, the

model must follow a rationale which also explains the psychological
reality behind our data, and, once they were analyzed, we must
validate the model by finding out if the internal consistency exists.

The importance of the model validation seems to be forgotten

by many researchers, however. To give an example, the popularity cf

Rasch model mainly depends upon its mathematical simplicity, which
comes from the fact that it has only one parameter, i.e., the

difficulty. Very few researchers stop to think, however, whether

this particular model and its simplicity are appropriate for their

data, nor do they try to find out the validity of the model by

checking the internal consistency in their results. Anocher example

ig the way many researchers use the three-parameter logistic model

for their data of multiple-choice test items, The rdtionale behind

the model is the knowledge o¥ random guessing principle, which is
rather unlikely to be the case in most multiple-choice testing

situations. Among others, the fact that they are ready to accept a
value which 15 less than the reciprocal of the number of the
alternatives of a specified multiple~choice teat item as the third

parameter, i.e,, the guessing parameter, is nothing but defeating

itself.

To avoid the possibility of adopting an irrelevant mathematical
model, the best solution will be to develop methods of estimating the
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operating characteristics of the discrete item responses without

assuming any mathematical forms. In the present study, this direct

approach to the operating characteristics is consistently used.
Although it creates more difficulty and requires more labors in
developing our methods and approaches, it is worth our effort

considering the due cause we have. The reader will find similar

' attempts in the works by Lord (Lord, 1970) and Levine (Levine,
i 1980), i.e., estimation of the operating characteristics without

b
B assuming any mathematical forms.

(III.3) Small Numbe: of Examinees in the Calibration Data

f

é 5 For a relatively few researchers whose calibration data are

3 obtained from institutes like Educational Testing Service, it is easy

: , to use those which were collected upon several hundred thougand ‘
: i examinees, -
! environments, however, the situation is quite different.

I extyemely difficult for them to find even one thousand volunteer
For this reason, it is necessary that

For most researchers who do their research in university ‘
It may be - %

! students for their subjects.
we should investigate and develop methods of estimating the operating

characteristics which do not require more than several hundred

Dbl sl

examinees for our calibration data.

|
' This is one of the important considerations in the present .

study. Our calibration data are tased upon five hundred hypothetical

examinees, whose ability levels are at one hundred equally spaced
positions on the ability dimension, with five examinees being placed

= it

! at each position. This configuration caun be considered as an

séyproximation to a uniform distribution of ability. To be specific,

' ! the five hundred ability levels range from -2.475 to 2.475 , with

i :
k j the equal steps of 0.05 . The uniform distribution has, therefore,
6.2 , for the interval of ability 6 , (~2.5, 2.5) ,

-

« aan,

-

2. « .
A s A o xvene B Cateaid s

the density of
as is shown in Figure 3-3-1.
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FIGURE 3-3-1

Ability Distribution of Our Wypothatical Examinees.
Actually, the Pive Hundred Examinees Are Placed at
the One Hundred Equally Spacad Positions from
=2.475 to 2.475 , with TFive Examiness

Sharing Each Position.

(I1X.4) O0ld Test
It is assumed that there exists a set of test items whose
operating characteristics are known, and our examinees have taken

the test, as well as a set of test items whose operating

characteristics are to be estimated. .We call the first set of test

items 014 Test, and the estimation of the operating characteristics
of the test ftems of the second se: is htased upon the examinees'

performances on the 0ld Test.
The methods and approaches developed on thia assumption are

directly useful in such a situation that, in adaptive testing, we

have a well-constructed item pool, but we want to add more test items
Another suitable situation will Le that we have a

to our item pool.
relatively small number of well developed test items which have a
high content validity for our purpose of measurement, and on the
trial-and-error basis we have obtained confirmed mathemaiical model

or models for separate test items with respect to their deductive

and inductive validities, so that we shall be able to use them as our

0ld Test.

-
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3

This assumption of the existence of the 0l1d Test is a
restriction, which we may wish to eliminate so that we shall be able
to expand the applicability of our methods and approaches to the :
situation where we must start the calibration of the operating |

characteristics from scratch. There are two different attempts for
this purpose, which will be discussed in a later chapter.

TR e i e o L

’ } In the present study, a set of thirty-five test items has been ; j
¢ chosen as our original 0l1d Test. Each of these thirty-five items has ]
three graded item score categories, and follows the normal ogive ‘ {

| model such that ;

a (6-b_ )
g x 2
1/2 g oY /2 du
)

(3.6) P (0) = [27)
8 ag(e-bxg+1

e Ty v e <zmiy
T Sal T

where X (-O,l,...,ug) is the graded item score of item g ,

Px (8) 1is its operating characteristic, ag (> 0) 1is the item

dicerimination parameter, and bx is the item response difficulty

parameter which satisfies 8

(307) =00 = bo < bl < sss < bm < bm +1 . .

v e
R IOt T

The item parameters and item response parameters of these thirty-

. five test items are shown in Table 3-4-1 . We have also used nine

‘ ‘ different subtests of the original Old Test as our Old Test on ’

different occasions, and these subtests are shown in the same table .
The numbers of test items ?

by indicating the test items by crosses,
in these subtests range from five to twenty-five. )
We can write for the item respouse information function, j

-

E' I (8) , such that
: & .
E.:' (3.8) I (9)= - Cle log P_ (0) b
S ' x 362198 Ty ?
:4 g }
and the item information function, 18(6) , is given as the conditional t h
i
"
5‘
du
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) ) TABLE 3-4-1 ﬂ
{ . .
’f Item Paramaters of the Tesat Items of Our Old Tests. i
3 *
e N Subtngta
by lremg) & b % 1] 2] 3] « ] 5T es] 7T s
j ! 1 1.8 | -4,75 ~3,78 x ]
b 2 1.9 | =4.50 <3.50 x x .
3 3 2.0 | ~4.25 <3.2% x x - 1
N 4 1.5 ~4,00 ~3.00 x x x
; 5 1.6 | ~3.75 <2.78 x
f * 6 1.4 | -3.50 -2,50 x x x x x x
: ; 7 1.9 | =~3,00 -2.,00 x x x
b ! . (] 1.8 | ~3.00 -2,00 | x x x x % 1
9 1.6 ~2.,75 «1,7% x x x x
* 10 2.0 | ~2.50 -1.%0 | = x x x x
b R . 11 1.5 | -2.25 -1.25 | x x x x x
¢ 12 1.7 -2.00 -1,00 x x x x x x i
J 13 o] s | -1 0,75 | = x , 1
¥ 14 1.4 | -1.50 -0.50 | x x x x .
v 15 2.0 | 1,25 -p.25 | x x x
by - 16 | 1.6 | -1.00 o0.,00 | = x x ;
b ' 17 1.8 | -0.75 0.25 x x
k. ! 18 1.7 | -0.50 0.50 | x % x x x x %
4 : 19 1.9 | -0.25 0.75 | = x
i 20 1.7 0.00 1.00 | x x x
¢ 21 1.5 0.25 1.2% | x x x .
E 22 1.8 0.5 1.5 | x x % x
k ’ 23 1.4 0.75 1.73§ = x x x x
i 24 1.9 1.00 2,00 x x x x x x
b 25 | 2.0 | v2s 225 x | x| x | x x
} 26 | 1.6 1.50 2.50 | = | x < | x "
£y f 27 1.7 1,75 2,75 | x x x x j
# 28 1.4 2,00 3.00 | x x x x x
i’ - 29 1.9 2.25 3,25 x x x
: , 30 1.6 2,50 3.50 | = x x x x x
; N 1.5 2,75 3.75 x
§ . - 32 1.7 3,00 4.00 x x x
t . 33 1.8 3,25  4.25 x x x
3 ‘ % | 2.0 ] 350 4.% x x
L : i 35 1.4 3,75 4.75 x ;
! - ]
1
. f et %
% . expectation of the item response information function, i.e., §
I . !
b | m
. ! (3.9) 1 ()= I8 1 (8) P (B) .
| q 4 =0 X X
- . X g 4 ‘
, 7
) The response pattern of the set of n test items is the set of the :

| {
. . n item scores such that

! -
; i (3.10) V = (xl, Xys een s X tee s xn)' . ' i
- g
{ By virtue of the local independence (Lord and Novick, 1968, Chapter ]
'y
16), the operating cnaracteristic of the response pattern V is i
. ? given as the product of the n operating characteristics of the %
v .
<4 item scores, so that we have i

ek
Gnilod

.
-
. -
i Sinall e o,

]
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(3.11) PV(G) = Px (6) .

xeV g

g
We can write for the response pattern information function, IV(G) ,
such ‘that

32
(3.12) Iv(e)---'a-?log PV(G) - I I ) ,

xevV
g g
and the test information function, 1(8) » 1s the conditional
expectation of the response pattern information functions. We

obtain

n
>

I (8) .
g=1 8

(3.13) 1(6) = 5 Iv(e) PV(G) -
The square root of the test information function of the 0ld Test

has an imporfant role in the present study, which will be described

in later sections. For the original 01d Test, this function of €

is approximately constant (= 4.65) for the interval of 6 of our

interest, i.e., approximately, (-3.0, 3.0) . For the nine subtests

of the original 01d Test, this function is not constant, but is

either a unimodal or a bimodal function of O . The square root of

the test information function for each of the ten 0ld Tests which

were used in the present study is shown in Figure 3-4-1,

L ( ): Subtest Pumbar ( )1 Subtest Wmber
80 a0
0 Y @)
s £
g0 $ 0
- 4
b [ =]
20 0
10 10
[+7.] [+¥7) i 1 W S | 2
-40 40 -20 20 10 OG0 W 20

LATENY TRAIT @

FIGURE 3-4-1

Square Root of the Test Information Punction of Rach of Subtests 1
through 9 , Together with the One for the Original 01d Test (54.65).

L
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‘ } (I11.5) Set of Five Hundred Maximum Likelihood Estimates

; ' 1 The maximum likelihood estimate of the examinee's ability
when each of the n items follows the normal ogive model can be :
obtained numerically (Samejima, 1969, 1972}, by using the operating :

1
v - characteristic Pv(e) as the likelihood function. Let A (8) be
4

I et

the basic function of item score xg » Wwhich is defined by

: . )
| (3.14) Axg(e) = 55 log ng(e) .

{ ' i We can write for the maximum likelihood estimate éV for the response

pattern V such that

|
;i (3.15) xzev Axg(év) =0 .

‘ , : g

i S In the normal ogive model, this basic function is a strictly

? decreasing function of 0 , and the two asymptotes of the basic
S 5 function are 0 and -» for the lowest extreme response pattew-wn :
' (0,0,...,0) , « and O for the highest extreme response pat-e.:,
(ml,mz,...,mh) , and -© and o« for all the other intermediate

R R

response patterns.

g. ' In our study, by the Monte Carlo method, we calibrated, for
; ; each hypothetical examinee, the response pattern of the n test

3 | ( items of the 0ld Test, and based upon this response pattern the

. maximum likelihood estimate of his abilitywas obtained. This set i
3 g, of five hundred maximum likelihood estimates takes an essential 3
? role in the calibration of the operating characteristics of each of . a

! i our unknown test items.

g ; The maximum likelihood estimate has such an asyptotic

! property that the estimate is conditiomally unbiased and normally
distributed with © and [I(Ei)]ml/2 as its two parameters, given
! 8 . It has been observed (Samejima, 1975,1977a, 1977b) that this
asymptotic normal distribution can be used as a good approximation

et . s Mty

T A




~18- : 111-10

to the conditional distribution of 6V , glven © , even when the
number of test items is not so large and the amount of test
information is relatively small. Throughout the present study,
this approximation is effectively used.

(111.6) Unknown Test Items Whose Operating Characteristics Are to
Be Estimated

There are ten hypothetical, binary test items, and throughout
the present study, our target is the estimation of the operating
characteristic of xg = 1 , or the item characteristic function,
for each of these ten binary items. Let Ph(e) be the item

,--.
;
;
g

characteristic function of the unknown test item h . For each

jtem, this item characteristic function follows the normal ogive

0
SN (e

model, such that

(-b))  _y2/2

a
(3.16) Ph(e) = [ZTT]-IIZI h e du .

-00

The discrimination parameter a, and the difficulty parameter bh

! are shown in Table 3~6~1 for each of these ten binary test items.

i

TABLE 3-6-1

i

i . Item Discrimination Parsmeter a
t and Jtem Difficulty Parameter b
: ! of Each of Ten Binary Items

W
=

o
o

Ttem h
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There is no doubt for the necessity of using more varieties

of nperatiug characteristics for the unknown test items, including

T TR R

unimodal functioms, functions with non-zero asymptotes, and so on.

Because of the amount of work done in the present study, however,

this has to wait for future i1esearch. The author hopes that some

other researchers will get interested in conducting such research,

T

using the methods and approaches developed in the present study.

g (III.7) Use of Robust, Indirect Information

Lord adopted his own method (Lord, 1969) of estimating true
score distributions from the observed scere distributions in his
attempt (Lord, 1970) of estimating the item characteristic functionms

e

? : of the SAT Verbal Test items without preassuming any mathematical |
1 _ forms. He excluded the item under study from the total test in

% ‘ defining the test score. This direct approach to the operating,

i, : characteristics does not require 0ld Test, and we can start from

the direct observation of the sample test score distributions. The

e

i . nuiber of examinees Lord used in his calibration of the item
characteristic functilons 1s 103,275 . This valuable study by Lord

; : provides us with a methodology which we can use for empirical data

i | which are found in large institutes like Educational Testing Service.

| There iz no question that a large sample size is desirable

SRNP IR P

¥
% : " in the estimation of the operating characteristics., There is a

0 i : necessity, however, that we should develop methodologies which are

L 4 applicable for much smaller groups of examinees. Levine (Levine,

- e e .

3 i - 1680) developed a method with this comsideration in mind. TFollowing
- ! { the present study by the author, he used 0ld Test as the basls of
: ‘ calibrating the operating characteristics of unknown test items.

I e  ds sl

3 ] In his method, Levine introduced a set of orthonormal eigenfunctions,

1 |
‘{ the number of which does not exceed the number of all possible
3
3

. ‘ also upon the number of examinees. 1In other words, Levine's method

response patterns of the 0ld Test. In practice, this number is much
less than this maximal value, and it is interesting to note that it
depends not only upon the number of test items in the Cld Test but

M . Sy O M ih e S
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involves a certain trade-off relationship between the number of
examinees and that of test items in the 0ld Test. He has tried his
own method using the author's simulated data based upon the original
0ld Test (cf. Section 1II.4) and the five hundred hypothetical

v examinees (cf. Section IIX.3), and his results turned out to be
successful. He alsc tried his method using SAT test items {Levine,

1981), using somewhat larger numbers of examinces, like one

T R T L S T e TR T

Te I o T e T T T Y T

thousand.

L In using a small number of examinees as the basis of the
] . E calibration of operating characteristics, we need some additional
inTormation other than the one which is directly observable, such

TR e

as the observed test score distribution, the response pattern, and

so on. Such indirect information must be robust to the fluctuation
_ cauged by a8 small sample size, In the present study, the conditonal
' moments of 6 , given its maximum likelihood estimate 6 , serves

T T e

for the purpose. In other words, instead of approaching the
ability distribution directly as 1is the case with Lord's method and ‘ ]
i Levine's method, we focus our attention to the conditional N
distribution of nbility 6 , given its maximum likelihood estimate 1
f : 3 , or the bivarilate distribution of © and ) « Thus the estimated { ;
unconditional ability distribution is obtained as an aggregate of T
the estimated conditional density function of 0 , given @-, or in ) 1
the form of integration of the estimated bivariate density function’

of 6 and 8 .

Py P ——

o Let us assume that the square root of the test information

A T e Al i it

function of our Old Test is constant for the interval of © of our

interest, as 1s the case with our original 0ld Test. We shall t

denote the conditional density of § » glven ability 0 , by ’;'

k ¥(8]8) . By virtue of the asympototic normality of the conditional [

3 ; distribution of O , given 0 , y(8|6) 1is approximated by the .

' normal density function, with 6 and [1(9)]‘1/2 as its parameters. }

Let O denote the constant value of [1(9)1-1/2 . The firet

through fourth derivatives of w(6|6) with respect to © can be ;1%
b

written ns follows.
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2 w(B]6) = -v(B]e)o"2(B-0) .

(3.17) bYd
(3.18) 3%32 y(Bloy = wBleyo~?ro73 (8- - 11 .

(319 2 w61y = wdersE-0) - y(d10)0TO6-0)7 .

(3.20) ;%—".. v(@le) = 3w<6|e>c"6w<6le)o"6<6-e>2 + y(Bloy~8(B-0)" .

Let g(B) be the density function of the maximum likelihood estimate

6 . We can write

Q0

(3.21) g(d) = f Y(Blere(e) do .

Let us assume that this density function, g(é) , is four times
differentiable. We obtain for the conditional expectation of 6 ,
given 8 , and the second, third and fourth conditional moments of

€ about the mean, given ) ,

3 1og g(8) = 8 + o2& g(B)1g® 17 .

a3 - ~ 2
(3.22) E(6|8) = 6+ 0 & 35
~ dz ~
(3.23) var.(8]8) » 0?1 + ¢ FTL log g(8)]
2 o A “o -
- 02[1 + o*{ fgz e®-5® - 1 S a®1E@ .
~ 3 Ta)
(3.24) E[{6-E(8[8)}2[8] = ab] 3‘%3 log g(8)71 .
and
- | .
(3.25) E[{6-E(8]6)}" (8] = 0*[3 + 60%{ fgz 1og (8)}
+ 3003, 1og g(B) 12 + 0% S 5)
352 log g(®)}* +0*{ 35u log g(8)}] .

R

3y
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We can see from the above four formulas that these conditional
moments are specified exclusively by 8 . 3(6) and O . Note,
moreover, that if the density function, 3(5) » 18 estimated, then
these conditional moments are obtaindble for any value of 6 within
its meaningful interval. The first through fourth derivatives of ‘ 5

log 3(6) can be written as follows.

A A T T ek,

i‘ (3.26) i log 88 = 5 x(® (2O .
b
I

4’ d? d 2 ~2
(3.27) 352108 8(0) = (8(®)7e(®) - {35 e®) 1)) .

TR S T e

3 . 3
(3.28) s5eloe 80 = [a®)? $pse(® - 35()+ S g(b)- é%;s(g)
+ 20 F5 e ® P11

"

l (3.29) j%llog g(8) « [{g(®)}3 é%u g(d) !
i 1

AT Y Y S e -

3
- 4{g®) g 2B+ Fp(®

P T i —

- 3812 Sop(®))?

B e RO S

2
+ 12g(8) { é% g(6) 12 5%28(9) !

- 60 S5 e M1 1s®I™ . N
Co

o e T T YT R ST e e

We notice that, since O is obtained as the reciprocal of
the square root of the test information function of the 0ld Test,

all we need is to estimate the demsity function g(@) from the set

of N maximum likelihood estimates, 65 (8=1,2,...,N) , with

the consideration of making the resultant density furiction four times

differentiable. This can be done by using the method of moments

(Elderton and Johnson, 1969), and approximating a polynomial to
The rationale behind this method will z'

the density functicn g(@) .
be given in Chapter 4,
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(111.8) Transformation of Ability 6 to =

We notice that the relatively simple formulas, (3.22) through
» glven its maximum

(3.25), for the conditional moments of ability ©
likelihood estimate 8 , 8re true only when the square root of the
test information function is constant for the interval of ability of |
our interest, as is the case with our original 0ld Test. As we have
seen earlier (cf. Section IIX.4), for all the other nine Qld Tests,

i.e., subtests of the original Old Test, the square root of the test
When we use one of these nine

information function is not constant.
subtests as our Old Test, therefore, (3.22) through (3.25) are no longer

true as they are. This problem can be aolved by transforming 6 , in
such a way that the resultant transformed 1atent trait T has a ccnstant
value for the square root of the test information fumciion, {I*(t)ll/z ’

for the meaningful interval of < .
be a function of 6 , such that

Let T

(3.30) = 1(8) ¥

The operating characteristic,
defined for the transformed latent

Px (6) , which

which is strictly increasing in 6 .,
P* (1) , of the item response Xy

R S

g
trait 1t equals the original operating characteristic,

is obvious from its definition as the conditional probability. fhus

we can write

BX (1) = 34 [t(8)] = P (o) .

(3.31)
g g g
H

From (3,.31) and (3.8), we can write for the item response information

I () , such that ‘
3
. 2 .
I: (1) = - *35— log P* (r)
g 9t
d%¢

-1 (95[ ] rlosP (9)’_17 .
8

function,

(3.32)

[N
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!
From this result, we have for the item information functiom I:(T) R :
m )
g do 2 -
(3.33) I*(t) = T I% (x) P* (1) = I () IE—J .
g x =0 g X g T
8 .
since h
m
g -
(3.34) I 2P (8) =0,
90 "x
38.0 g -

It can be seen that, with the response pattern V , we obtain

similar results, such that
(3.35) P3(t) = B¥[T(0)] = P, (6)

for the operating characteristic, P%(T) , and

d6,2 - d26
(3.36) 16(1) - Iv(e) Pa?] ~ 5% log Pv(e) ;:3

for the information function, 16(1) « We can write for the test
information function I*(t) edither from (3.36) or from (3.33) such

that
(3.37) 1% = 1oy 1487
. df ]

end, since 1T 1 a strictly increasing function of 6 , we have

(3.38) (012 - [net2 8L,

Let C be an arbitrary constant for the square root of the
test information functiom, {I*('r)]]'/2 . From (3.38) we can vwrite

(3.39) g% - ¢l orcenyt’?

Thus we obtain for the transformation of 6 to T such that

A SARIEE SN — T e
PR M T s S b
g . e . . R - ; i : o o ’
. . ket e e ' N T
AR BRI L .\x R
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(3.40) t =c} J (et ae + a,

where d 18 an arbitrary constant for adjusting the origin of T .

In practice, this tranaformation will be much more simplified

if we approximate the functionm, [1(0)11/2 by a polynomial of an
appropriate degree, using the method of moments. The detail of this

process will be given in Chapter 5.

We can write for the density function, f£*{1) , of the
transformed ability i

(3.41) £8(T) = £(0) %% .

This equation indicates that the new density function thu- obtained
is no longer uniform, as is the case with our density function of

® . Figure 3-7-1 illustrates two examples of f£f%*(T) as the
results of the transformation of 6 to T , which are based upon

[T ¥ 1Y

Subtests 1 and 2 , respectively.

o8 | os r 3
g Subtest 1 g Subtest 2
L. ] R o
w oAl W
, u N o TTveyvvTTTTTTIYI R Y ” and
JA o'o ) 1 i 3 I fl _l °.° ‘
{ 0 20 40 00 10 20 30 ]
| | T, 0 ‘
i FIGURE 3-7-1
| ‘ Dansity Function, £%(v) , of <t Trensformed from ¢ by the Polynomisl 5
.- of Dagree 8 (Solid Curve), in Contrast to the Original Density Punction N

£(0) (Dotted Curve), vhen we used Subtest 1 (Left) and Subtest 2 ‘
(right) ss our O1d Test, Respsctively. !

The maximum likelihood estimate, 6 , of ability 6 , which
is based upon the response pattern V , can be obtained by using
the operating characteristics Pv(e) as the likelihood function. 1

nani e N T

TN ———— ey e e - .
. WA ————— . . -

EIETRE N R 1S o : .
- e K tmaicida U ERRLE U A S NP RET (Y 3 PR . . ' . . e N -
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, In a similar manner, the corresponding maximum likelihood estimate,
' T, can be obtained by using P*V(T) as the likelihood function.

By virtue of the transformation-free character of the maximum
‘ likelihood estimator, however, this second maximum likelihood
' estimate can also be obtained by the direct transformation of 6 ,

R T i w e s

such that

(3.42) 2 = 1(8)

(cf. Samejima, 1969).

TR ST s
.
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IV Method of Moments As the Least Squares Solution for Fitting a
Polynomial

The methoc of moments (Elderton and Johnson, 1969) was frequently

used in the present study, and on many occasions it took an important
role. In some situations, we fitted Pearson type density functions, and
in many other situations we used polynomials. It should be noted that,
when we adopt a polynomial to approximate a density function, there is a
poesibility that, for some range of .the variable, the estimated density
turns out to be negative. In practice, however, it seldom happened, and,
even when it did, it did not geriously affect the process or the result
of our estimation. Since the polynomial is less restrictive in its shape
than many other functions which have the same number of parameters, and
in addition, its derivatives are given as even simpler polynomials, the
wmethod of moments for fitting a polynomial looks promising.

In this chapter, the rationale and reason behind the success of
using polynomials as functions for us to fit by the method of moments
are described, and some observations are made. This part of the present
final report is mainly cited from the research report RR-79-2, which
includes the fine effort by one of the author's assistants, Philip
Livingston.

(Iv.1) Approximation to the Density Function from a Set of Observations

The method of moments was originally developed to graduate the
observed frequency distribution by assuming some specific mathematical
function and fitting the observed moments of up to a specified degree.
This can readily be expanded to the case in which we wish to estimate a
density function from a aet of observations, rather than a frequency
distribution.

Let Uy s ¥ and ¥, denote the second, third and fourth moments
about mean of some distribution. If we preassume that the distribution
should belong to the Pearson's Sygtem, then the criterion « , which is
defined by

(1) =8 (8,+3)7[4(26,-38,-6) (48,-38 )17,

Ay
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E i where 61 and 82 are obtained as the raties such that 7
o G ey =g i
A. and i
(4.3) B, = 1, u;2 R g

% takes an important role. Substituting the sample moments for Yo s Y4 and j

¥, in (4.2) and (4.3), and through (4.1) we can evaluate Pearson's
criterion «x , and, according to its value, we decide which type of the
Pearaon's system our distribution belongs to. I1f, for imstance, «x turned
out to be negative and finite, then the distribution will be of Pearson's

' Type I; 1f it turned out to be such that « =0, B, =0 and B, <3,
then our distribution will be of Pearson's Type II; and so on.

RO DGR - STV i

e T T T TR T WA KT T e e e e,

i 5 Figure 4-1-1 ghows the set of five hundred maximum likelihood
{ estimates, ﬁs ,» which was introduced in Section III.5 of the preceding
chapter, in the summarized form of frequency distribution. In the same
figure, also presented by a dotted line is the theoretical frequency of the
maximum likelihood estimat2 & , which was obtained from (3.21), using the
uniform density (cf. Section IIL.3) for f£(6) and n(6,0) for w(éle) .
‘ It turned out that Pearson's criterion xk and the values of 81 and 82
indicated that our distribution belongs to Type II, and the frequency
function obtained by the method of moments is drawn by a& solid line in
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Figure 4-1-1,
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FIGURE 4-1-1

‘ l'uquuc;: Distribution of the Five Bundred Maximum Likalihood Estiimates (Histogram),
Pearson’s Type 1I Frequancy Punction Fitted by the Method of Moments (Solid Curve)
snd the Theoretical Frequency Punction of the Maximum Likelihood Kstimate, & .
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i

In contrast to this result, Figure 4~1-2 presents similar -
results, which were obtained by approximating the frequency function by

FREQUENCY

I A e

R L

T e

FREQUENCY

FREGUENCY
3

Trequency Distribution of the FPive Hundred Maximum Likelihood Estimates (Histogram),

the Polynomial Fitted by the Mathod of Mowsuts (Solid Curve and the Theoreticsl
§ . Tha Three Polynomisls

3 . Fraquency Punction of the Mexisus Likelihood Estimste, {
ars of Degrees 3 , 4 and 5 , Raspectivaely.
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i :
the polynomials of degrees 3, 4 and 5 using the method of moments,

¥ : reaspectively. Comparison of these results with Figure 4-1-1 may make

us prefer polynomials to Pearscn type frequency functions, because of
This is especially obvious when we

£ thedr flexibilities in shape.
¢ .
compare the Type II frequency function with the polynomial of degree 4,

in both of which the first through fourth moments were fitted.

Figure 4-1-3 illustrates two polynomials fitted by the method of j
The figure belongs to “

?‘ . woments to each of the two sets of observations.
! ! the combination of the Two-Parameter Beta Method and the Curve Fitting

3 ! Approach, Degree 3 Case, which will be introduced in the following
chapter. 2,500 observations of 6 , which were produced by the Monte
Carlo method, were classified into two groups, i.e., the success and the
These two

failure groups for an unknown binary test item, item 4 .

g subsets of observations are shown in Figure 4~1-3 in the summarized form ﬂ

of frequency distributions, by thick and thin lines. For each subset, ,
1

b polynomials of degrees 3 and 4 were fitted by the method of moments, and
are shown by a long, dashed line and a dotted line, respectively,

; :' oz}

) ! >

3 : =

. (7]

4 : z

t a

e Q

g >

- . Eooth |

\ ‘ d 4

,’f‘ l m .

x = <

! : [++]

| 0

- ' @ ,

) a.

i""’ ; i

| L5
' RR~78-1 LATENT TRA&! © 1

S
‘ FIGURE 4~1-3

Relative Yrequenciss of © Shared by the Success (Thick Line) and the Pailure (Thine Line)
Groups and the Correspending Polynomials of Dagreas 3 (Long Dashes) and of Degrae 4 (Dots)
for Item 4 . Two-Parameter Bats Method and Curve Pitting Approech, Degree 3 Cass.
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(IV.2) Method of Moments As the Least Squares Solution for
Fitting a Polynomial

Let h(t) be any function of the variable t , which is defined
in &8 closed interval, [g, E] , and 1is integrable in the Lebesgue sense
and has the first m moments. This function h(t) can be some
specified mathematical function, or an empirically obtained fumction.
Let a, (i=0,1,2,...,m) be the i~th coefficlent of the polynomial

which can be written in the fomm

(4n 4) et o,

and is to be fitted to the function h(t) following the least squares

principle., We define @ such that

t n 1.2
(4.5) 2Q = [h(t) - T & t7]7 dt.
t i=0

Differentiating Q with respect to a. and setting the result equal to

zero, we obtain

t m
(4.6) 9 . [h(t) = I a, t11[(~t¥] dt =~ 0
aa i
T t iw0
and then
t . t ., D 4
4.7 t" h(t) dt = tt I a tTdt,
£ 10

for r=1,2,...,m .

Thus it is obvious from (4.6) that the least squares principle
requires the resﬁltant polynomial of degree m to have the same O0-th
through m~th moments as h(t) , which is nothing but the principle
upon which the method of moments is based. From this result, it is
obvious that both methods provide us with the same polynomial.

e e - .
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When the function h(t) is observed only &t N voints of the
variable t , as is often the case for an empirically observed function,

£ T e

we can replace (4.5) by
N m " 2
L {[n{t) - : o, t] w(t )},

(4.8) 2Q =
k=1 i=0

TN MR T T gy

. wvhere w(tk) is some appropriately chosen weight for t, -
| Differentiating (4.5) and setting the result equal to zero, we obtain

m

i
Z a, t .
1m0 ik

N N
(4.9) I 7 n(t) wit,) = = tF wit)
-1 Tk k) V& 1 K K

AT o oy e

If the function h(t) is continuoue and we divide the interval (t, t]
subintervals, by the middle value theorem there exists at least

, in each subinterval (t,, Ek) which satisfies %

Dwe

into N
one value, Ckr

T,

| (4.10) Ek T n(t) dt = gf hig, )(E, ~ t,.)
‘ ' N t Sxr e’V ko =k7*
<k

: where

e T e

‘ (4.11) tk =t

3

for k=1, 2, ..., (N-1), and

e Al TP LR
¢

[ad

3

ct

(4.12) -

o
]

S
; . _ When the width of each subinterval is small enough, these (m+l) values, .
L. (x=0,1,2,...,m) , can be approximated'by a single value, say the j

E; , midpoint of the subinterval. Using such a value as t, and the
1‘
If all

subinterval width as w(tk) y We can approximate (4.2) by (4.6). :
the subinterval widths are equal, (4.6) is simplified to provide -

T N r o i
t, h(t,) = I I ao,t. " .
PR L T B

; ’ N

(4.13) g
k=1
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TR




g

> Syt
amidline e b I s Bt G Ll

P ———

~34- 1v-7

(1v.3) Direct Use of the Least Squares Solution

We can rewrite (4.4) in the form

*

w1 Adee -
@i wgm E ey (gre-1y7h ool ey

where s=r+l=1,2,,..,,m¢1 , jJ=i+l=1,2,...,m+1 , and u; is the
(s-1)-th moment of t about the origin, defined by

t
(4.15) " ‘] 71 nee) ae
8
t
Let o be & columm vector of order (mtl), whose j-th element is uj-l ,
and y' be a column vector of the same order whose s-th element is v; '
Thus we can rewrite (4.,11) in the matrix notation to obtain

(4016) v' = Aa s

where A 1z a symmetric matrix of order (m+l) whose sj-element is
given by

(4.17) [34s-1)"1 [ete-l L Its-1y

The least squares solution for o 1s obtained, therefore, by

(4.18) &= A

For the purpose of illustration, the matrix A for m= 2 i1is shown

below as an example.

(E-1 (- thH/2 (@®B-Hn
(4.19) A= | (82-t2)/2 (E3- t3)/3 (4~ /4] .
(3 £33 (&% Y76 (B3 t5)/s

In practice, we ugually use a greater value for m , and obtaining the
inverse matrix of A will be the most intricate process of computation,
and the availability of & package program for inversing a symmetric
matrix will be of necessity.

e g e s
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L (IV.4) Solution by the Merhod of Moments
4 : ; Let R(t) be a half of the interval width for waich the

b i
i function h(t) 4is defined, and M(t) be the midpoint of the interval,
Lo S such that
F (4.20) R(t) = (€ - £)/2
¢ ]
L ! } and
b (4.21) M(t) = (t +t)/2 .
9 | For convenience, we define a new variable t* by changing the origin
@ | of t to the midpoint of the interval [t, t] , i.e.,
¢ ;
i ‘ .
' { (4.22) th o=t - M(t) .
[ |
if ; Thus the polynomial of degree m in t can be rewritten as a
v % polynomial of the same degree in t¥% , or
i | i n m
i I ’ (4.23) I ay ci = I Ay t*i N
! f i=0 1=0
' : {
" i with the relationship between the two sets of coefficients such that
F . ; -a for M(t) = 0
i (4.24) a m . _
! P le (-1)i r a, (:) [M(t)]i r ,» otherwvise, ]
i-r t"o.l,z,....m .
: {
5 The following relationships hold between the moments about the ;
midei-nt M(t) and the coefficients ar (r‘l.z.oco.m) . ,;]
[m/2] {
(.25 ug =2 p [2e0n]™ [r(e P EOH j
g k-O g=0,1,2,...,[m/2] . ;
[(m'l) /2] . - 4
4.26)  wpo=2 T a,,. [2(genn]? [ree))REHFDR
2g+l wmo 2kt
g-o’l'2|oot'[(m“1)/2] "‘l

————— [ S,
i .’
e - D

T —.-,..,‘,.4.‘...,‘,...4 B et e e
-

4 s . . [ R
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In the above two equations, [ ] indicates the integer part of the

* * 4
number, and ng and w3 o+l indicate even gnd odd moments about the

L N T T e e

5 midpoint, M(t) , respectively.

o

We define the following two syumetric

Let p=gtl and q=k+1 .
matrices, B(O) and B 1) whose orders are both (wtl)/2 when m

is odd, and (m/2)+1 and (m/2) when m 1s even, respectively.

VeI

T e

: (4.27) Bgy = { REIZFD aprgy-3]™ )

F (4.28) By = [R(£)12 P01 [a(prq)-11"2 1

’ Let v?o) and v?l) be column vectors of the corresponding orders,

3 such that

E, (4.29) Whoy = (Mg ¥ s p*1,2,...,[w/2341 ,

i

;

; (4.30) Wy = Luk g ) p=1,2, 000, D) 2]
; .

E’,

; . Let 6(0) and a(l) denote the coefficient vectors of the

4

corresponding orders, which can be written as

q.1'2. soe |tm/2]+1 »

T g - PR

s ~ (4.31) a(o) = { az(q-l) }’ [
! and
':‘ (4032) a(l) - ( azq"’l }' » q-‘1|2|0000[(m+1)/2] [

Thus we can rewrite (4.25) snd (4.26) in the matrix notation such that

(4.33) "?0) - 28(0)3(0)

and
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(4.34) u?l) - 23(1)8(1) .

The coefficient matrices 3(0) and a(l) are obtained, therefore, by

-1
(4.35) a(O) = (1/2) B(O) U?o)
and

-1

In practice, the computation is facilitated if we define two matrices,
C(O) and C(l) , of orders [m/2]+1 and [ (ur+1) /2] , respectively,

such that

-1
(4.37) €0 = { [2(p+rq)-31"" 1}

and
: -1
(4.38) Cyy = { L2@ra-ad™" 1,

which do not depend on a specific set of data but depend only upon
the degree of the polynomial. From these two matrices, we can obtain
the two matrices, (1/2) C(O) and (}/2) C(l) , and it is easily
seen that (1/2) B(O) and (1/2) B(l) are obtained by dividing the
element in the p-th row and g-th column of the corresponding matrices
by [R(-r..)]ch«"q%3 and [R(t)]Z(p+q)-1 , repectively, for every
combination of p and q . The resultant sets of equations for
obtaining the coefficients a, are listed below for the polynomials

of degrees 3, 4, 5, 6 and 7,
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(1) Polynomial of Degree 3

8y = [1.125u8/R) - [1.875u8/R*]

4 = {9.375u4/R"] - [13.22504/R"]
8, = [-1.875u8/R*] + [5.625u8/R"]
a3 = [-13.125u8/R] + [21.875;1'3'/3’]

(4.39)

(11) Polynomial of Degrae &

[ %" [1.7578125u8/R] - [8.203125u8/R"] + [7.382812508 /R*]
a; = [9.375u3/R°] - [13.125u8/R"]

(4.40) { s, = [-8.203125u8/R"] + [68.90625u8/R*) - [73.628125u4/R")

8y = [-13.22508/R%) + [22.875u8/R’]
\ &, = [7.3826125u8/R*] - [73.828125u8/R") + [86.1328125u/R" ]

(111) Polynowial of Dagres 5
8o = 11.7578125u8/%) - (8.203125u4/2"} + [7.3828125u3/R"]
a; = [28.7109375u4/R%] - [103.359375u4/R"] + (81.2109375u3/R"]
8, = [-8.203125u8/R"] + [ 68.90625u8/R"] - [73.828125u4/R’)
(4.42) sy - [-103.359375u4/R%] + [442.96875u8/R7) - [378.984375u8/R")
¢, = (7.3828125u8/R°] - [73.828125u3/R7) + [86.1328125u%/R"]

85 = (81.2109375u3/R7) ~ (376.984375u8/R"] + [341.0859375uf/R")

(iv) Polynomial of Degree 6

[ % 4 [2.39257€1u8/R] - 121.5332031;15/:’1 + [47.3730«69;:2/3‘1
- [29.3261719ug/n’]

. - [28.7109375;1‘1'/!'] - [103.35937»3/:'1 + m.zmmug/l"]

s [-21.5332031;13/11'] + [348,8378906 5/3'1
- [913.6230469;12/?.73 + [615.0496094;:3/1’1
(4.42) a5 = [-203.359375u/0%) + [442.96875u8/07} - [378.98437503/2°)
T [~7.3730469u3/n’] - (913.6230469u5/n’]
+ [2605.5175781»2/!1’] - (18&7.5&882811.13/11“]
a5 = [81.2109375u4/R7) - [378.984375i3/R") + [341.085937504 /R

k 8 4 [-29.3261719u4/R7] + [615.84960941:3/R°]
- [1sk7.swsza1ug/n“] + [1354.8691406u8/21%)
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(v) Polynomial of Dagree 7
4

8¢ [2.3925781u8/0) - (n.smo:xug/n'l + [4373046903/0"%)

- (zs.azsuuug/n’]
v a, ¢ [64.5996094u8/0%) - [426.357&219»3/!'] 1
+ 1791.8066406,4/R7) - [439.892578114/2") ‘

8, & 1-21.53320318/R") + [348.8378906 §/n*) 1

| ; - laxs.szaobssug/l’l + [s1s.|&9sosoug/n'1

; a; & [-426.357421908/2%) + (3349.9511719u4/R7) ;
% - [6774.345702208/8%] + [3939.0332031u4/0" ') |

' (4.43) o, & (47.37304693/2%] - [913,62304638/2") i

- + {2605.51757614/2° ) - l1367.5A08201uz/l"]

85 ¢ [791.806640604/R7) - (6774.34570314/%") ]
+ umo.uoamug/n“l - [8709.873046918/2'*)

8 * 1-29.3261719u4/07]) 4 (615.8496094us /2" ]

~ 11847.548828108/8' 1] + [1354.869140608/8'%)
a, & [-439.6925781u8/R%) + (2959.0332031u4/R'*)

- [8709.8730469u/R' ) + [sssx.ammu,/n“]

(For simplicity, in the above equations, R s used instead of R{t).)

B e TN T

? From the values of a,'s thus obtained and the midpoint
; = M(t) , we can find out the values of the coefficients, ui's ’
! by means of (4.24). ]

f (IV.5) Expanded Use of the Method of Moments

As we have observed in the preceding sections, the method of
muments for fitting a polynomial can be considered another procedure
; ' for the least squares solution. It has a definfte advantage over
‘ the direct least squares solution, since the computation of the H
f coefficients, oy (i=0,1,2,...,m) , can be done by the application

| of straight-forward algebra, while the direct procedure for the least
squares solution involves the invexsion of the matrix A .

This fact implies that we can adopt the method of mowents for
fitting a polynorial for the approximation to any target function, ;
which 1s not necessarily a density function or a frequeancy
distribution. 1In fact, in the present study, we used the method for
approximating the square root of the test information function of the
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01d Test, among others, which facilitated the transformation of

; ability @ to t . The rationale behind this method will be

described in the following chapter.

(IV.6) Selection of the Interval

When we fit a polynomial to a frequency distribution or a
set of observations, the selection of the interval is more or less
When we use the method of moments for fitting a

¥

i

/

3 automatical.
! ‘ polynomial to & function other than those, however, the goodness of
g fit of the polynomial to the target function depends largely upon

ﬁ our selection of the interval,

Figure 4~6-1 illustrates such a8 situation. In this figure,

the square root of the test information functiom, [1(0)11/2 s of

Subtest 1 is drawn by 8 solid line. The other two dashed and

dotted curves are the polynomisle of degree 7 obtained by the
[-3.0, 3.0] and

T e e

o o

wmethod of moments, using the intervals of 8 ,
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FIGURE 4-6~1
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Squars Root of the Test Information Pumction of Subtest 1,

3
T [I(e)fl:l/2 » (5011d Line) and the Polynomials of Degres 7 ,
“ ¥hich ware Fittad dy the Method of Homents with [-3.0, 3.0]
(Daghes) and [~4.0, 4.0) (Dots) s the Interval of o ,
Respectively.
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] | [-4.0, 4.0] , respectively. We can see that the latter polynomial
fits much better than the former to the target function. This
"implies that, although the interval of ability @ of our interest
is even a little smaller than [-3.0, 3.0] , in order to obtain a
polynomial which fits to the target function in this interval, we

must use a larger interval such as [-4.0, 4.0] .

: We cannot generalize this result too much, however. Figure
4-6-2 presents a similar set of curves for Subtest 2 . It is noted

that, while the fit is better for the polynomial obtained by
: ' using the intervel, [-4.0, 4.0] , than the one obtained by
g j using the interval, [-3.0, 3,0] , in the former situation there

still is a substantial discrepancy form the target function.

8 ;
~

[(xen=
&

e

N 40 -30 20 10 G0 10 20 30 40
LATENT TRAIT &

j FIGURE 4~6-2

Square Root of tha Test Information Vunction of Subtest 2 ,

l [1(0)11/2 , (S011d Line) snd the Tolynomials of Degree 7 ,
Which wers Fitted by the Mothod of Moments with [-3.0, 3.0)
(Dashes) snd [-4.0, 4.0] (Dota) as the Interval of ¢ ,

Respactively,
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Figure 4-6-3 presents the result obtaiued by using the three
subintervals of [-4.0, 4.0] , with @ = -1.5 and 0.5 as the
cutting points. These three polynomials are uniformly of degree
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4 . We can gee that, together, they fit very well to the target

function. This {s another way of using the method of moments.

- o Y .

(zeo
g 8 B8 8 & §

40 -30 20 10 00 10 20 30 40
LATENT TRAIT @

FIGURE 4-6-3

Square Root of the Test Information Punction of Subtest

2, (101172, (Sol1d Line) and the Thres Polynowials
of Dagrea & (Dots), Which Were Fitted by the Method of -
tloments Using the Thrae Subintervals of 8 . ' |

TR T e o s e e

The use of subintervals may be effective when we apply the i

method of moments for fitting polynomials tc relatively smooth

’ mathematical functions. The same is not necessarily true, however,

{f we use the method of moments for empirical data. Figure 4-6-4
Our data are again the set of five

s e

; illustrates such exsmples.
v hundred maximum likelihood estimates 58 , and, in the first graph,

it was reclassified into the lower and upper subsets of 250

_ : observations each, and, in the second graph, in a similar manner, f
4 f it was divided into five subsets of 100 observations each., The (
; polynomials shown in these two graphs are uniformly of degree &4 .

g : We can see that neither result is appropriate for us to use as the L

PO

-

‘ estimated density function, g(ﬁ) .

To conclude, the selection of the interval or intervals is
very important in order to use the method of moments for fitting
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A & polynomial or polynomials successfully, and we must make a good
§ A judgment in each situation considering the expected shape of the
target function, and the nature of our data.

T R T R C o o e
mJ
»

£7Y 3 20
: j § 0} g 2
) <
Lo op £,
j
° '
; . . w 0 )
; i ] 1
é B FIGURE 46-4 |
? . Polynomial Approximstions of ths Demsitv Punction g(6) of the Sat of Five
! Hundred Maximue Likelihood Estimetes O, Obtained upon the Original Old Test 1
' 1 by the Msthod of Moments, by Dividing the Totsl Sat into Two Subsets (Left) f
; aud into Five Subsets (Right). 1
There are many examples other than those illustrated here, 4

and it is recommended that the rcader refers to the research report,
RR-79~2, and many others such as RR-78-1, BR-80-2 and RR-80-4.
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? : (IV.7) Comperison of the Results Obtained by the Method of Maments i
& ' and by the Direct Least Squares Procedure j
é . : Comparison of the polynocuials obtained by the methed of ?
Pos : moments and by the direct least squares method was made by using
{ . the standard normal distribution function as the target function
g § (cf. RR-79-2). It was made by changing the interval of @ for which i

these methods are applied, and, as is expected, in most cases the
| resultant two polynomials are identical, . %

There are somewhat differant raesults, however. Figure 4-7-1
pregents such an example. In thig figure, the resultant polynomial
obtained by the method of moments is plotted by dots, and the one
obteinad by the direct least squares method is shown by short dashes.
In both cases the interval of 8 , [=6.0, 6.0] , was adopted. It
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_02 _§ b 1 1 2 i [ 4 1 4 o I ) |
80 -50 -40 -390 -20 10 00 10 20 30 40 50 to
T RR~79-2 3 VARIABLE § 2 T

FIGURE 4~7-1

Polynomials of Degresx 7 Obtained by the Method of Momants {Dots) and tha Loast Squares Solution

( Short Dashes ) , with the Interval, {-6.0, 6,0] , sand the Tzylor's Serius (Long Dashes),

Approximating the Standard Normal Distribution Function (Solid Line). Those Obtained by the
Firat Two Mathods Uzing the Interval, (~3.0, 3.0] , Are Also Plotted (Crosses).

is noted that, while the result obtained by the method of moments fits
to the target function reasonable well for the total interval of § ,
the one obtained by the direct least squares solution divgrts, quickly,
from the target function outside the interval, (-2.0,2.0) . This

diversion comes from the limitation of the capacity of the computer
in inverting the matrix A . This example also suggests, therefore,
that 1t is wise for us to use the method of moments instead of the
direct least squares method. 1In the same figure, the corresponding
two polynomials obtained by using the interval of ¢, [-3.0, 3.0],
are also plotted. Since they are identical, they are drawn together

by crosses, and only for the interval where the curves divert from
the target function.
We recall that there is another type of polynomials which are

< .
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obtained by Taylor's szeriez. Using Hermite polynomials (Kendall and
Stuart, 1963), we can write for the Taylor's series for the standard

normal distribution function such that

N(0,1) & 0.500000 + 0.3989426 ~ 0.0664903 6% + €.00997355 g5
- 0.0011873267 + 0.0001154346°% -
- 0.C00009444656%  + ..

(4.44)

The resultant polynomial of degree 7 is drawn by longer dashes in

It 15 noted that the fit of this polynomial to the

Figure 4-~7~1.
(-107’ 157) »

target function is better for the interval of & ,
but outside of this Interval it diverts from the target function

This 1s a common tendency over the results of different

quickly.
degrees of polynomials (cf, RR-79-2).
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V Estimation of the Operating Characteristics of the Discrete Item
Responses and That of Ability Distributions: II

In the present chapter, following Chapter 3, we shall
continue integrating the rationale and findings of this part of the
research. Throughout this process, the method of moments will
frequently be used, especially, for fitting polynomials. The
reasons for the choice of the polynomial in preference to the other
functions were described in the preceding chapter. Among others,

it provides us with the least squares solution.

(v.1) Estimated Operating Characteristics Which Are Directly
Observable from Qur Calibration Data

Since our data are simulated data, the proportion correct
for each of the ten unknown, binary items (cf. Section IIL.6) is
directly observable, Figure 5-1~1 {llustrates two sets of the
proportion correct for item 6, by solid and dashed lines,
respectively, together with the theoretical item characteristic

function. The subinterval widths used for these two curves are 0.05

PROPORTION CORRECT

FIGURE 5~1-1

Proportion Correct for Item 6 Using t!z Bubinterval Width 0.05 (Soiid Line)
snd 0.25 (Dashed Line), &and the Similar Result Obtained by Using the Maximum

Likelihood Ketimate 8 Instead of Ability 6 and the Bubinterval Width 0,25
(Dotted Line), Together with the Item Characteristic Pumction (Solid Curve).
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. . and 0.25 , respectively. Thus, in the first case, five hypothetical
Ei ' : examinees sharing the same position (cf. Section III.3) makes the
?' . total frequency for each subinterval of 0 , aud, in the second case,

, twenty-five examinees sharing five adjacent positions makes the

X . total frequency. We can see from these results that they are by no
means good approximations to the theoretical item characteristic

! function, because of their large fluctuations. The reason is that

e e s il e

i we have only five hundred hypothetical examinees in our calibration
E‘ l : . data.

It should be noted that these two curves in Figure 5-1-1 are

(

! not observable, if our calibration data are empiricael data. In

practice, the closest we can get from our empirical data is,
therefore, the proportion correct based upon the maximum likelihood
estimate O » instead of ability © itself. This third proportion
, correct for item 6 is also plotted inm Figure 5-1-1 by a dotted iine,
; using the set of five hundred maximum likelihood estimates obtained
, upon our original 0ld Test (c¢f. Section III.3). The subinterval

P e AR PN 1 ok SR OAMMGE  RL

width for this proportion correct is 0.25 , as was the case with

e~ M il

the second curve based upon ability € . Again, we can see that

R 3 T T\ W Ty e L TSR T e e £

the fluctuations from the true item characteristic function are

POV VR

, . large.

As was poin :ed out in Section III.7, the use of indirect
information obtainable from our calibration data will ameliorate
. the situation, If our results provide us with better approximations
‘ to the theoretical item characteristic function than those three

T IS T s ST LG T E A

curves do, therefore, we shall content ourselves by deciding that

our methods are successful.

I (V.2) Necessary Correction for the Scale of the Maximum Likelihocd
Estimate When Used As a Substitute for Ability Scale

! | It is commonly taken for granted that, whenever the scale
of the maximum likelihood estimate is available, it can directly be
%ﬂ : 1 i used as the substitute for the ability scale. The reader may

wonder, therefore, why we need an elaborated process of estimating
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the operating characceristics when the set of maximum likelihood

estimates of ability is available. If our calibration data contain

only several hundred examinees, because of the sampling fluctuations
, they cannot provide us with a good approximation to the theoretical
% operating characteristics, as we have seen in the example given in

the preceding sectiom.

Our next question will be: Is it justifiable to use the f %

gh scale of maximum 1ikelthood estimate and its proportion correct for
; the estimated item characteristic function when we have a large set f i
of calibration data, like those based upon twenty thousand examinees? ’/)q

The answer still must be "No,” or "Not without some modification.”

R e e

Let us assume that our 0ld Test provides us with the ‘g
approximate unbiasedness of the maximun likelihood estimate 6 , I ‘ |
and the normality for its conditional distribution, given ability i
l 6 , for the interval of 6 , (g,é) , of our interest. Thus we i i

can write . . :
4

T N R TR AT e —

(5.1) EBle) = 0 . !

From (5.1), we obtain for the expectation of § such that

A T

F
e

[} .
(5.2) E(§) = I E(B|6) £(B) 46 = E(6) .
8 :

By virtue of the binomial law, we have, from (5.2), for the m-th

moment of 8 about the mean

m
(5.3)  E[B-E(I™ = I (‘:)E[{e-x(e)}““r E{(6-0)F |6} .
=0

From (5.3), we can write for the specific cases where m = 2, 3 and l g

4,
!

(5.4) Var.(§) = Var.(8) + E[Var.(8|6)] ,

(5.5) E[{B-E(8)}°] = E[{6-E(8)}®] + 3E[{6-E(8)} Var.(6|8)]

. ‘f% »lz’vyr,u,n.l TUT T e e g e L e e
Mk o p s R eree e - e e PP e Ty S e
b R T AT I e I R T T T o T N - > - -
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and

(5.6) B[ {8-E(8)}*) = E[{6-E(8)}"*] + 6E[{6-E(0)}*{E{var.(|0)}]
+ E[(8-8)"]0) .

The above results imply that the distribution of the maximum
1ikelihood estimate & 1s different from that of ability 6 , und,
above all, it has a larger variance. Since the proportion correct
is the ratio of two such distributions, thase results indicate that
it contains a biac in itself.

The correction for this distortion cen be made in the
following way. Let us assume, tentatively, that the square root of
the test information function of our Old Test is approximately
constant for the interval, (g.é) » 848 is the case with our original
0ld Test (cf. Section III.4). Then the conditional distribution of

6, given 0 , 1is approximately N(9,0) , where o 18 the
reciprocal of the constant square root of the tést informatinn
function, [1:(6)]"1/2 . Under this condition, the formulas (5.4)

through (5.6) can be simplified to provide us with

(5.7) Var.(8) « var.(8) + 0% ,

(5.8) E[{8-E(8)}3] = B[{6-E(0)}*")

and

(5.9) E[ {6-E(B)}"] = E[{0-E(8)}*] + 60% Var.(0) + 3¢* .

Thus the distribution of & has the same mean and the third momeut
about mean as that of 6 . ‘

The regression of ability 6 on the maximum likelibood
estimate 6 ia given in Chapter 3 as (3.22) . To reproduce it,

we have

(5.10) E®|8) = 8 + o2 é% log g(8)

R S R

i oty
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necesgsarily linear, although that of the maximum likelihood
(5.10) can be evaluated if we approximaste the
g(@) y by, say, a polynomial obtained by the

We can shift the value of © , therefore, to ;

¢

i&

’ ~50~- V-5
ﬁ where

2 5 .

f“ (5.11) g(6) = f@ y(a|e) £(o) a8 .

[ 0

l Note that the regression, which is given by (5.10), 4is not

E 6 on

ability 6 1s.
density function,

method of moments.
E(GI@) , 80 that we make the proportion correct for a specific

value of & the function of the corresponding value of E(8|6)

TETL T e mme

3 When the square root of the test information fumction of our
01d Test is not constant, as is the case with each of the nine
subtests of our original Old Test, we cannot directly apply the

In such a case, we must transform © to T , follow 4

L abcve method.
‘ the whole process by using T instead of 6 , and then retransform

T to © . The rationale behind this transformation is given in
Section III.B , and its actual procedure, using the approximation
to the square root of the test information function by a polynomial
' obtained by the method of moments, will be ‘given in the following

e

section, A :
' L] |
The observations made in this section have nothing toc do :

with our methods and approaches for estimating ability distributions

and the operating characteristics of discrete item responses,

however. 1In the present study, either the conditional distribution

of ability 0 , given its maximum likelihood estimate 8 , or the 3
bivariate distribution of 6 and 6 is approximated from our ;,
calibration data. This does not include, therefore, the direct

frequency ratios of the maximum likelihood estimate, g . q

(V.3) Trensformation of 6 to T Using the Method of Moments %_ !
for Fitting a Polynomial e
The rationale behind the transformation of 6 to T 1is 1 .

given in Section III.8 . This process will be simplified 1f we

e e -4 - ._..J-L':.__ .
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use the approximation to the square root of the test information
function oy our 0ld Test by a polynomial fitted by the method of
moments. In so doing, the right selection of the iaterval of ©
for which the sethod of moments is applied is very important, as

-

was explained in Section IV.6..

We can write g

[T

ey

|
f 12, ® . x
- .12)  [L@®1% s AL

wvhere m 1is the degree of the polynomial we wish to obtain.
Substituting (5.12) into (3.40), we obtain

NI

m

: - .13 tict 1o G ledia

[ wHl -
{‘ - I oy of
:o k=0 ’ B
ri; |
ﬁ where 3
i -d k=0 |
j : (5.14) _ {
f . dﬁ - (Ck) 1 dk-l k= 1’2, con ,\Iﬂ'l . '

i \
b Thus the transformation of 6 to T can be made through another
Considering that (3.40) includes a

polynomial of degree (m+l) .
2 , the straight

tedious numerical process of Integrating [I(8))
forward method given by (5.13) and (5.14) will save us a substantial

g
* l
g amount of time and labor.

- . i Figure 5-3-1 presents the transformation of 6 to =
obtained by this method, for Subtests 1 and 2, to represent those
In all of these nine cases, the interval,

] O for the nine subteats.
Lot (-4.0, 4.0] , was used in applying the method of moments.

i ol sz

! Figure 5-3-2 presents the resultant square root of the test

information function, [I"“(T)]J'/2 , for Subtests 1 and 2. As i=
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| expected from the different degrees of fitness of the polynomials
; to the respective [1(6)]1/2 '8 in these two cases, which are shown
f in Figures 4-6-1 and 4-6-2 of Section IV.6, regpectively, the
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resultant [I"'('r)]ll2 for Subtest 1 is closer to the targe:

constant than the one for Subtest 2. For all the other seven
subtests, the result is similar to either one of these two results,
or their fitness is somewhere between the two.

(V.4) Classification of Methods and Approaches

Various methods and approaches for estimating the operating
characteristics of discrete item zesponses, and for estimating
ability distributions, were developed in the present study. For
convenience, by a method we mean a way of approximating the
conditional density function of abi'ity € or < , given its maximum
likelihood estimate 8 or T , and by an approach we mean a way oy
producing the ability distributions of separate discrete response
groups, and hence the operating characteristics (cf. Section III.l).
They are summarized as follows.

(A) Methods

(1) Pearson System Method
(11) Two-Parameter Beta Method
(111) Normal Approach Method

(B) Approaches

(1) Bivariate P.D.F. Approach
(11) Histogram Ratio Approsch
(111) Curve Fitting Approach

(iv) Conditional P.D.F. Approach

(a) Simple Sum Procedure
(b) Weighted Sum Procedure
(c) Proportioned Sum Procedure

Prior to the present study, the author had developed a
method (Samejima, 1977) of eutimating'the operating characteristics
of discrete item responses, which, later, was called Normal
Approximation Method. With the classification given above, this
method belongs to the Bivariate P.D.F. Approach. Although it had

Ceee e e e .
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been developed before the author started the present study, a brief

description of this approach will be given in Section V.5, so that
the 'reader will understand its characteristics and the differences
from the combinations of a method and an approach, which are the
main products of the present study.

(V.5) Normal Approximation Method

Let h(0) be a linear.function of & , which minimizes the
quantity Q , such that

¥

) ﬂ
( (5.15) Q = E[e-h(®)1® . j
l |
; : We obtain

1 !

: (5.16) n(8) = Cov.(8,8) [Var.(8)1™* [6-E(B)] + ECO) ,

: where Cov.(8,8) denotes the covariance of ability o and its
I ' maximum likelihood estimate 6 .

| When the square.root of the test informaticn function of

] our Old Test is approximately constant forx the interval of 6 of
our interest, as is the case with our origimal 0ld Test, we can
write from (5.7)

TP, R U i SO cmiens SO msme B iasns |

; | (5.17) Cov.(6,6) = Var,(8) = var.(f) - 02 .
Y | Subgtituting (5.17) into (5.16) and rearranging, we obtain ;
( (5.18) n(8) = [1-02{Var.(8)}"L1[6-E(8)] + E(o)

k -« [1-02 Var.(é)}-llé + 02[Var.(6)]-1 E(6)
{

“ngf+a ,

. From this result, it is obvious that the two coefficients, a and

! : 8 , can be estimated from the set of maximum likelihood estimates.
When the joint distribution of 6 and 8 is normal, this function,
h(§) , becomes the regression of 6 on 8 . Im such a case, the
conditional distribution of 6 , given & , is normal, with

s S e e e L P b A : Iy » 2 - 3 A .
i . N . . A A T W s e a0V LML T
T T e e B i S e e IR I S e s v oot T et e S e Pt ol LAl i Lty pm ot ST &= RN TR
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the common conditional variance such that
{5.19) Var.(6|8) = o2[1-02{var. () Y1) .

In the Normal Approximation Method, a bivariate normal
distribution is assumed for the joint distribution of o and 8
for each subpopulation of examinees who share the game discrete
item response to an unknown test item. With our calibration data,
there are two groups of examinees, i.e., the success and failurec ;
groups, for each of the ten binary test items (cf. Section III.6).

For each of the five hundred maximum likelihood estimutes, i
és » using the Monte Carlo methoed, a single value al # s
calibrated., Let © denote this calibrated value of 6 . Thon we
have two subtests of & , for the success and failure groups of
item h , respectively. The ratio of the frequency distribution of
the success group to the sum of the two frequency distributions
wakes the estimated item characteristic function of item h .

? f , characteristic function of item 6, thus obtained by using 0.25 as
’ , . the subinterval width of frequency distributions of 6 . In the

‘ - same figure, also presented by solid triangles and hollow squares

: F are the estimated item characteristic functions obtained by

) i producing five and ten 8 's for each of the five hundred maximum
: likelihood estimates, és » vespectively, in order to increase the
‘ | accuracy of estimation. We can see that even with the five hundred
§ 's , the estimated item ch-.acteristic function is fairly close

to the theoretical item characteristic function, and it becomes !
closer when we increase the number of 8 's to 2,500 and to

5,000.

3
i
!
Figure 5-5-1 presents by hollow circles the estimated item i
i
|

el S0 S L

ka2

1 When our 0ld Test does not have a constant square root of

! the test information function for the interval of @ of our
interest, as is the case with the nine aﬁbtests of the original
0l1d Test, we can transform @ to 1T and follow the same process.
To obtain the estimated operating characteristics, we can
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\ Estimated Item Characteristic Punctions of Item 6 Bused upon 500 & 's :
li (Hollow Circles), upon 2,500 & 's (Solid Trismgles) and upon 5,000
' 6 's (Hollow Squares), by the Normal Approximation Mathod, Uning
the Original O1d Test. A

. : retransform Tt to 6 after the process has been completed (cf.

Sections III.8 and V.3) .

¢

: . (V.6) Approximation to the Dens@~1 Function of the Maximum
i Likelihood Estimate by a Polynomial Obtained by the
Method of Moments

A S coaadl &

It is noted that, in the Normal Approximatfon Method, the
margianal density function, 3(6) , is totally unused. In contrast
to this fact, in the present study, we make the full use of this
i marginal density function. In so doing, we approximate g(a) or
g g(7) , depending upon the necessity of the transformation 6 to
| . : T , by a polynomial obtained by the method of moments. An example
' of this approximation was already given in Section IV.l, as Figure
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4-2-1 . In this example, three different polynomials of degrees 3,
4, and 5 were fitted to the total set of five hundred maximum
likelihood estimates 68 , which are based upon the original Oid
Test. These three different situations are called Degree 3 Case,

Degree 4 Case and Degree 5 Case, respectively,

Figure 5-~6-1 presents another example of approximating the
density function by a polynomial obtained by the method of moments.
In this example, howcver, the target density function is divided
into two portioms, which belong to those who snswered item h
correctly and those who did not, respectively, and three polynomials
of degrees 3, 4 and 5 were fitted to each portion. The result
illustrated here is for item 6, and the original 0ld Test was used
for producing the five hundred maximum likelihood estimates.

> 02

Eol AV LaEaTNee s

2 /
4 01 ) /

! 4

30 20 40 00 10 20 30 40

MAXIMUM LIKELIHOOD ESTIMATE 8

FIGURE 5-6-1
Approximatious to the Two Portions of the Density Munctionm, g(@) s tor the
Success and Failure Groups of Item 6, Respectivaly, by Polynomials of Degree
3 (Dots), of Degree 4 (Short Dashes) and of Degrves 5 (Long Dashes) Obtained

by the Mathod of Moments. Maximum Likelihood Estimates Ara Based upon the
Uriginal 01d Teat, and Are Shown As Two Mistograms.

To distinguish the two subset.. of the maximum likelihood estimates
from each other, the histogram of Gs for the failure group is :
marked with crosses, and the one for the success group is marked )
with solid triangles. The two polynomials of degree 3 are drawn by
dotted lines, those of degree 4 are plotted by short dashed lines,
and those of degree 5 are drawn by long dashed lines. This is an
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example chosen from those which are used in the Bivariate P.D.F.
Approach, which will be introduced in Section V.10 . From these
approximated density functions, we can obtain the estimated

conditional moments of ability 6 , given its maximum likelihcod

estimate 6 , through the formulas (3.22) through (3.25).

¥

f

E o Table 5-6-1 presents the number of hypothetical examinees
I ‘ for each of the two subgroups, i.e., thuse who answered correctly
i ;

! to each of the ten unknown, binary test items and those who did

i
B

! not, respectively. There are seven hypothetical examinees to be

TABLE 5-6-~1

.\—~“

Wumbars of Hypethotical Examinaes Who Belong to tha Success and Failure

f ! Croups of Zach of the Ten Unknown, Binary Test Items, Nagative Wumber

g ; Shown in Brackets After Each Entry Indicstes the Nuaber of Examinees to

b : Be Subtracted When We Use Dagreae &4 Case for tha Total Set of Maximuam :
{ . Likaliheod Bstimates Which Ave Based Upon the Original Old Tast, j
[ l .
; : Itemh Failure Success I

§~ : Subgroup Subgroup Y
f 1 22 (-3) 478 (-4) P
; ! 2 68 (-1) 432 (-6) o
! 3 100 (-3) 400 (-4) ;
. ! 4 150 (-3) 350 (-4) |
' g 5 202 (-3) 298 (-4)
| 6 246 (-3) 254 (-4)

! 7 302 (-3) 198 (-4) 1 ]
¢ - 8 345 (-3) 155 (~4) H
i 9 399 (-3) 101 (-4)

S 10 429 (-4) 71 (-3) ;'l

: excluded in Degree 4 Case, when we use the maximum likelihood i
estimates based upon the original 0ld Test and either Two-Parameter -
Beta Method or Normal Approach Method, which will be introduced in
Sections V.7 and V.8 . For one of them, the estimated densgity

g(8) , assumes a negative value, and, for the other six,

function,
the estimated conditional variance, Var.(elés) , turned out to be

The frequencies to be subtracted from those for the

T T B T oT

k' L negative.
' success and failure groups for each of the ten unknown, binary test
Exclusions of

ey

items are shown in brackets in Table 5-6-1,

—
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examinees happened in some other situations where we used different
methods and/or different 0ld Tests, but the number of examinees

i , excluded does not exceed nineteen.

E . In most of our studies both Degree 3 and 4 Cases were used,
f’ L and sometimes Degree 5 Casé was added. As it turned out, in all

g situations, the rescultant estimated item characteristic functions
, of the ten unknown, binary test items are practically identical

‘ across the cases for the meaningful range of ability 6 . This
proves the robustness of our methods and approaches over the

‘ approximation to the density function, g(8) .

(V.7) Pearson System Method

l We shall assume that the square root of the test information i

[1(3)]1/2 , of our 0ld Test is not constant, as is the ;
Thus we need the transformation f

function,
b ! : case with most practical situations,
! [

; 5 of 6 to T, and, at the end of the whole process, the 1

b i
h i retransformation of -t to € , the rationale and actual procedure g
If the 0ld Test

of which were described in Sections III.8 and V.3 .

has a constant amount of test information, as is the case with our ]

original 0ld Test, the reader may simply replace T by 6 . Let ;
¢(T|?) denote the conditional density function of 1 , given its

maximum likelihood estimate, T . It should be recalled that < !
is obtained from & through the same polynomial transformation

which was introduced in Section V.3 . Ve can write for the first

A, =

T T AT o e

- E through fourth conditional moments of 1t , given T,
S . .. - X |
¥ P (5.20) E(1|T) = 14+ C 2&% log g(t) . i
5 , 4
Lo ,
g A A o =2 -2 d2 R
: | (5.21) Var,(t|t) =C “[1+ C 12 log g(D)] .
:. : I j
l.( '( -~ 3 S "'6 d3 ~ .
L (5.22) E[{t-E(t{D) 13|21 =C7[ 373 log 8(D)] . ;
5 3
and }
]

R N U T AW avacyt o REEEE
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b5 e _2, a2
(5.23)  EL(v-ECe|DI4]E] = ™13 + 6072 S, 1og g(4)
'4 dz A~ - 4 2
+3c °{ T2 log g(Hl2+c 4{ 'd%“ log g()}] ,

where C is the target constant for the square root of the test
information function, [I*('r)]]'/2 . Substituting (5.21), (5.22)

and (5.23) for My s Mg and Yy in (4.2) and (4.3), we obtain

the two indices, Bl and 82 , and, from these two values and (4.1),
Pearson's criterion « is obtained. These indices, which can be
computed for any fixed value of 7 , will indicate which type of
distribution of Pearson's system (Elderton and Johnson, 1969;

Johnson and Kotz, 1970) we should turn to for ¢(tv]7) . A brief

summary of this procedure can be described as follows. .
Type I (Beta distribution, general) ¢ k<0 q
Type Il (Beta distribution, symmetric) : x=0, ﬁluo, 82<3 i‘
Type III (gamma distribution) ! K=, 262-381-6-0 {
Type IV : 0<k<l .
Type V : k=l g
Type VI s k>l
Type VII (including t-distribution) : k=0, Bl-O, By >3 i
Normal distribution : k=0, 31 =0, B, =3

: \
,;;

approximated, has an important role in all of our four different

approaches, which will be introduced in Sections V.10 through V.14 .

The estimated conditional density function, $(’r|f) , thus

It is a characteristic of the Pearson System Method that we

use all of the first four conditional moments of <t , given T

Using these four conditional moments, the inldice.s, B B2 and - « ,
are obtained, and they direct us to one of the Pearson System
distributions. For example, when we approximate the density functionm
g(8) , which is based upon the original 0ld Test, for the total
group of examinees, in Degree 3 Case, $(elé) turned out to be of
Type 1 for 318 values of és » of the normal distribution for 181

values of és , and for the other one case it is undefined because
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of the negative value for the estimated fourth conditional moment;
in Degree 4 Case, $(O|§) proved to be of Type I for 432 values of
3 és » of Type II for 54 values of 38 » undefined for 13 values of
és because of the negative values for the estimated second and/or
Lo fourth conditional moments, and for the other one case the estimated
densitv, é(és) ; is negative and, therefore, it is undefined. If,
for instance, @(elé) . 1s of Type I, then the four parameters of the

Beta distribution will be estimated from the four conditional

moments of © , given 6s ,» and so on.

; In comparison to the other two methods, i.e., Two-Parameter
Beta Method and Normal Approach Method, which will be introduced in

Section V.8 and V.9 , we can say Pearson System Method is

T T I R I e T T e

theoretically sound. It will provide us with varieties of

unrestricted curves for the estimated conditional density functions, K

$(Ti§) » which will enable us to approximate the true conditional !

‘ i deusity functions well. TIts disadvantage lies in the fact that the 1

ST

Fems e

use of higher conditional moments, like the fourth moment, may lead
us to inaccuracy of estimation, as is implied in the two examples
given in the preceding paragraph. If this is the case, we may use

S

TR e

vither Two-Parameter Beta Method or Normal Approach Method, which

requires only the first two conditional moments.

(V.8) Two-Parameter Beta Method

e - g o
B = D NP e F

, Beta distribution is known for its abundance of different

e _: shapes in its density function. They include unimodal, symmetric
' curves, unimodal, asymmetric curves, J-shape curves, U-shape

curves, and linesr functions. For this reason, the distribution

has been used by many researchers in approximating empirical

e A g _ .

distributions. In the Pearson System Method, which was introduced
in the preceding section, Beta distribution is used as two of the
Pearson System distributions, i.e., Types I and XI. When we
approximate the conditional density, $(T|§) » by a Beta density

ey

function, we can write

(5.26)  3elD = [Blog a1 12 )P by W b pmu ) "D i

s




c ‘ . C e
i i
4

-62- v=-17

3 | where Pz dp s 82 and b; are the four parameters of the Beta

distribution, and B(p;,q;) is the Beta function which is given by

1 pz-l qz-1
(5.25) B(pf,q%) = u (1-u) du .
0

These four parameters are estimated from the first four conditional

moments of 1t , given T , and the resuitant Bl and 62 (c£.

o Section IV.1). We can write

‘! (5.26) Br s g = (/D1 & (42) B 18 (2)? + 16() 1 M2
(5.21) b= dp = (BICc - B[ED2|R0 2, (i) ? # 16 12
i? (5.28) 82 = E[t|f] - pabomB)/r

i E »

; ; (5.29) 3{ = E[7|1) + a;(ﬂ%_g%)/r ,

| where

=4 32
W e
- 4

! i (5.30) r = 6(8,-8,-1) / (6+38,-28,) .

- [

when tlie two parameters, P: and Q3 , are equal, the Beta

TwemITIY T S

distribution becomes Pearson's Type II distribution, and we have

———

(5.31) Pr=dr=r1/2 .

T IR T
>

N %

and, otherwise, it is Pearson's Type I distribution.

o—y
il e b

When the two of the four parameters of the Beta distribution,
az and b% » which are the lower and the upper endpoints of the
interval for which the density function assumes positive values,
are a priori given, the estimation of the other two parameters is
much more simplified. In fact, we only need the first two

conditional moments of 7T , given T , in addition to the set

JEEN con-s SUUNF uynimens TIOR ety QTS AIPIOY

T e e e
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values for ar and b% « We have

: 2 -1

: - {5.32) P=M (-M)M"-M ,

] . ;
% , ' and -
F\ ' «

1 3 - -1 - -

i (5.33) q =M (l-xl)zx2 1-M)

l} R

where Ml and Mz are defined by

i

.“ v | -1

ﬁl : (5 .34) Ml {E(Tlf)-&%](b€-a{_) ’
N :

l( and

E

' (5.35) M, ~ Var.(t|) (by-az)™" .

l ; In the Two-Parameter Beta Method, we adopt a priori set
parameters, as and b% , and estimate the other two parameters,

p~» and 4z accordingly, and use them in (5.24) for the
It has an advantage over

i e

estimated conditional density, $(z|7) .
the Pearson System Method in the sense that we only need the first

f two conditional moments of T , given T , instead of four, and

yet we can make use of the abundance of different shapes of the

; Beta density function. The biggest problem is how to select
' L suitable values for a. and by for each fixed value of ¢ . In

the present study, these values are chosen relatively arbitrarily,

i and we adopted

T 4
f (5.36) {a% = T - 2.55C
| 1

b. w T 4+ 2.55C° ,

>

t - where C is the target constant square root of the test ;
Actually, this method was used

. . information function, {I*(T)]_l .
% ’ . ' only for the original 0ld Test, so ¢t equals o (= 0.215) .
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| Although all the results obtained in the present study turned

out to be as good as they can be, which will be introduced in
later sections, the selection of suitable values for a: and b;
is yet to be investigated in future, to make Two-Parameter Beta
Method theoretically sounder and more useful.

TR T AR T

h : (V.9) Normal Approach Method

A simple, straightforward method of approximating the

] conditicnal density function, ¢(Tl§) » using the only first two
|
conditional moments of

T, glven T , may be the approximation by
a normal density function. We can write

- T TR T S

| - _

h 531 8D = 2m) V2 epl-Gew? auph

E‘ ' where

?‘ | (5.38) w o= E[t|?] , 1
h i

: x and i
? 2 (5.39) U, = Var.[t[7] . g
' !

An advantage of this method over the Pedrson System Method
; is that we need only the first two conditional moments, and one
L over the Two-Parameter Beta Method is that we do not need ény a
; : priori set parameters. A disadvantage is obviously that it
4 - : restricts the estimated conditional moment to be a unimodal,
i symnetric function, regardless of its true shape.

= B

In spite of this
restriction, however, Normal Approach Method worked very well both in

combination with the Bivariate P.D.F. Approach and with the

Conditional P.D.F. Approach, the results of which we shﬁll see in
. succeeding sections,

ceeaciil s Rt

(V.10) Bivariate P.D.F. Approach

b , As was introduced in Section V.5, in the Normal Approximation
L [ Method, we approximate the bivariate distribution of T and - N
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or 6 and & if the square root of the test information function

of our 01d Test is constant, by a bivariate normal distribution,
for each subpopulation of examinees who share the same item score

to item h . Our results turned out to be quite successful.

Figure 5-10-1 presents the theoretical regression of & on
6 which is based upon the original 0ld Test, and the intervals of
the standard error above and below this re -ession, by dotted lines,

8

ITEM 1 20 [TEM |

MAXIMUM LIKELIHOOD ESTIMATE

LATENTY TRAIT @ LATENY TRAIT @

FIGURE 5-10-1
Comparison of the Thecretical Regression for Ability 6 on Its Maxigum Likelihood
Estimate & (Dotted Line) with the Bast Fitted Line of Ability 6 , on & (Dashed

Line), for Each Item Score Group of Item 1 . Also the Standard Errors of Estimation
Are Shown on Each Side of the Regression, and of the Best Fitted Line.

for each of the success and the failure groups for item 1 . 1In the

same figure also presented by dashed lines are the empirical linear
6 , with the intervals of the empirical

standard error above and below the linear regression, which were

introduced in Section V.5 . We can see in this figure that for the

success group these two sets of curves are almost identical for

8 y while the discrepancies are
substantial for the failure group. This example of the failure

~
|
i
4

e i i e AMETTN

-40 -3.0-20 -10 00 1.0 2.0 3.0 40

o 5 PP <P e SR R
A b eat
Sirel o i e Rl . A =

ey

i -




T R A W OT A w s

AT Ry TR T, vy e e e e s

AT e

e

TN T ey

S-S

-66~ v-21

group for item 1 is the only extreme case, and, in fact, thirteen
out of the remailning eighteen cases provided us with similar results as
the one for the success group for item 1 , four cases show slight
discrepancies, and the other one case lles somewhere between the

two examples in Figure 5-10-1 in diversion.

The results illustrated in Figure 5-10-1 suggest that we may
need to investigate some othexr approach than the approximation by
the bivariate normal distribution to the joint distribution of =
and T . This can be done by making use of the marginal density
functions of T and the conditional density functions of T ,
glven T , for the separate subpopulation of examinees.

Let g (;) denote the proportion of the density function

of the maximum likelihood estimate T for the subpopulation of the

examinees who share the same item score, x (-0,1,...,mh) , and
Y (Tl%) and £ (71,T) be the corresponding conditional density

*n

of T , glven T » and the proportion of the bivariate density of

T and T » Tespectively., We can write

(5.40) sxh(r,fr) - ¢xh<-rl%> sth ,
where
.. 'k A
(5.41) g(t) = x;io gxh(r)
and
. X oy .
(5.42) E(r,T) = x:g() Exh(-c,'t) .

To obtain the estimate of the proportion of the bivariate
density, & (1,7) , we classify the set of W %i's into (mh+1)

T T IR S .
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: . item score categories, depending upon the item score Xy (-0,1,...,mh)
i : the examinee i obtained for a new test item h , for which the
operating characteristics are to be estimated. The method of
» moments is applied for each of these. (mh+1) subsets of T , and the
s ' shared density function, gxﬁ(?)‘, i1s estimated for each subgroup.

The conditional moments of +t , given T s are also obtained for

separate subgroups, using the formulas (5.20) through (5.23) , with %
; ; the replacement of g(1) by (N/N_) g (1) , where N denotes
S *» % *n !
y . the number of examinees whose item scores to item h are x . ;
; E ' Based on these estimated conditional moments, the parameters of a ;
: specific density function, which is adopted for ¢xh(11%) , Gre !

obtained for each sgbgroup kh . The choice of ¢xh(1|;) depends

upon which of tﬁe three methods, i.e., Normal Approach Method;
Two-Paraﬁeter Beté Method and Peatson-S&stem Method, is taken. The
bivariate density function of T and T 1s obtained from (5.40)
for each of the (mh+1) subgroups. Then the estimated operating
characteristic, p_ (8) [= p* (t(8))] , is given by

%, * ;

‘ . (5.43) (B) - I £ (<, 't)d'c [ & }( 5 (1,1)d7] .
. : -0 j-o

: ’: -ol’ﬁ.t’mh .

g : This approach was applied to our data (cf. Section IIX.3) in

{ i ! combination with the Normal Approach Method (cf. Section V.9) for
T .j ' Degree 3, 4 and 5 Cages. We used the five hundred maximum likelihood
? estimstes, éa » which were based upon the original 0ld Test. The
polynomials cof degrees 3, 4 and 5 approximating gxh(r) for each of

i f the two subpopulations, i.e., the success and the failure groups,
{ are illustrated for h = 6 in Secticn V.6 as Figure 5-6-1.

e BT S P S S

I T AT L A e L

T T R ey

[ ) Figure 5-10~2 presents the resultant estimated ;bility

distributions in Degree 3 (dotted curve), 4 (short, dashed curve)
f and 5 (long, dashed curve), together with the theoretical density
(s0lid curve) and the frequency distribution of € (histogram with 5
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ITEM 6, FAILURE GROUP

£

— -

B oensiTy

40 30 20 10 Q0 10 20 30 40
LATENT TRAIT ©

£

ITEM 6, SUCCESS GROUP

g .DENS (TY

40 30 20 10 00 0 20 30 4D
LATENT TRAIT 6

. FIGURE 5-10-2

Batimated Proportions of the Demsity Function of Ability © in Degree 3 (Dottad
Curve), 4 (Short, Dashed Curve) and 5 (Long, Dashed Curve) Casss of the Bivariate
Y.D.F. Approach with the Normal Approzch Method, for Each of the Success and
Failure Subpopulations. Actual Fraquencies (501id Line with Diamonds) and the
Theoretical Proportion of the Density Function (S0l1d Curve) Are Also Drawn,

golid diamonds), for each of the success and failure groups. We

can see in this figure that, except for the lower end of © for

the failure group and the upper end of @ for the success group,
these three curves of Degree 3, 4 and 5 Cases are very close to the
The results for the other nine binary test items

theoretical curves.
Tn some cases the fit is best in Degree

are similar to this example,
5 Cage and worst in Degree 3 Case, but this order is not true with

all the cases. In most cases, the resultant’ three curves are close

to one another, as we can see in Figure 5~10-2.

Figure 5-10-3 presents the resultant three estimated ltem

characteristic functions of Degree 3, 4, and 5 Cases for item 6,
which were obtained from (5.43) with = 1 and n, = 2 , by dotted,
ghort dashed and long dashed curves, respectively.

We can see in
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this figure that all these results are close to the theoretical item
characteristic function, which is also shown in the figure by a solid
curve, and are much closer than the frequency ratios of 6 for the
correct answer, which are shown by a solid line with diamonds in the
figure. If we compare these three estimated item characteristic
functions with one another, we can say that the result of Degree 3
Case is not as good as the other two. This is not a general
tendency, however. For most of the other nine test items, the
rasultant estimated item characteristic functions of Degree 3 Case
are much closer to the corresponding theoretical item characteristic
functions, and, in fact, for item 7 it shows the best fit among the

thraa.

10

&

os}
as}

0.2

TEM CHARACTERISTIC FUNCTION

40 30 20 10 00 10 20 30 40O
LATENT TRAIT 6
FIGURE 5-10-3
Estimated Item Characteristic Munctions of Item 6 for Degras 3 (Dotted Curve), 4
(Short, Dashed Curve) and 5 (Long, Dashed Curve) Casas of the Bivariate P.D.F.
Approach with the Normal Approach Mathod, Yogether with the Thaoretical Item

Characteristic Function (80114 Curve) and tha Actual Fraquency Ratios (Solid
Line with Diamouds).

(V.11) Histogram Ratio Approach

In this approach, and also in the Curve Fitting Apprcach and
the Conditional P.D.F. Approach, which will be introduced in the
following two sections, we make use of the estimated conditional
density function of <t , which is evaluated for ithe maximum
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likelihood estimate, Qs , of each individual examinee s . This
is the difference of these three approaches from the Bivariate
P.D.F. Approach, in which $(T|?) is used for approximating the

bivariate density function, £(t,T) , as we have observed in the

preceding section.

Using the Monte Carlo method, we have the computer produce
a specified number of Tt following the estimated conditional
density function, a(rlfs) , for each value of %s . Let T denote
the values of T thus produced, as we did in the Normal
Approximation Method, and v be the number of Tt 's produced for
each %s . The resultant set of T 's are classified inte (mh+1)
categories, depending upon the item score N (-0,1,...,mh) which
the examinee s obtained for item h . Then each 1 18 °

transformed to 8 , by means of
-1
(5.44) p =T [t(6)] .

When 1( ) 1is given by the polynomial shown as (5.14), this process
can easily be performed by the Newton-Raphson Method.

We divide the interval of © of our interest into
subintervals of equal width. Let t denote the subinterval, ﬁt
be the midpoint of the subinterval t , and H (8ct) denote the
frequency of 8 's , which belong to the item score X and the
subinterval t . We have for the estimated operating characteristic

of the item score Xy
m

g
- 8 -l =
(5.45) ﬁxh(et) uxh(éet)[jfo Hj(eet)] y X =01, .o0,m

This approach was applied to the set of five hundred maximum
l1ikelihood estimates és , which werc obtained upon the original
0l1d Test, in combination with the Two-Parameter Beta Method for

approximating the conditional density function, ¢(9|6) . The

number of hypothetical examinees actually used in Degree 4 Case is

e
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3 ; | 493 {cf. Section V.6), while in Degree 3 Case the total 500

examinces were used. In both cases, we adopted v =5, and 0.25

for the subinterval width, Figure 5-11-1 presents the resultant

!

ﬁ

E , estimated item characteristic functions of item 6 for Degree 3 Case ﬂ
{ by triangles, and for Degree 4 Case by squares, respectively. ]
§ wpr A
! S

; : 8 )
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FIGURE 5-11-1

L t
L ' . Estimated Item Characteristic Functions of Item 6 for Dagree 3 (Trisngles)
: and 4 (Squares) Cases of the Histogram Katio Approach and Thoss for Degres
\ 3-3 (Long, Dashad Curve) and 3«4 (Short, Daghad Curve) Casss of the Curve
ritting Approach , with the Two-Parumetar Beata Mathod,

We can see that the two sets of estimates are fairly close to the

R -
e vt G N e i ol

theoretical item characteristic function of item 6, which is drawm

by a solid curve in Figure 5-11-1, It is expected that the fitness

; ! j will be even better if we increase v , and decrease the subinterval
J width, Similar results were obtained for each of the nther nine

binary test items.

ek cme o e

: : An advantage of the Histogram Ratio Approach over the others

f ' lies in its simplicity and straightforwardness. In order to obtain

a smooth curve for the estimated operating characteristic, it is
v , and a small width

advisable to use a fairly large number for

! for the subinterval, t , of 6 . i
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(V.12) Curve Fitting Approach

This approach follows the same process as the Histogram Ratio

Approach until we obtain VN @ 's , which are divided into (mh+1)
subsets of item scores *, for item h . Then for each subset of
8 's a polynomial of a specified degree is fitted by the method

of moments. Let N (8) denote such a polynomial fitted for the

h
8 's of the subset X, + The estimated operating cheracteristic

of the item score Xy is given by

- “h -1
(5.46) P (8) = n_ (8)[ " n,(8)] , =0,1,...,
o X, ymp 3 *n “n

This approach was applied to the same set of 8 's as we
obtained for the Histogram Ratio Approach in the preceding section,
Both polynomials of degree 3 and degree 4 were fitted to the
resultant two subsets of 6 's , which wefe obtaired i{n each of
Dagree 3 and Degree 4 Cases. We shall call these four cases
Degree 3-3, 3~4, 4-3 and 4-4 Cases, with the second number indicating
the degree of the polynomials fitted to the subsets of & 's . An
example of the curve fitting for Degree 3-3 and 3-4 Cases for item
4 was given in Section IV.1l as Figure 4-~1-3,

The resultant estimated item characteristic function fox
item 6 in Degree 3-3 and 3-4 Cases are shown in Figure 5-11-1 in
the preceding section by long and short dashes, respectively,
together with the results obtained by the Histogram Ratio Approach.
Figure 5~12~1 presents the corresponding results for Degree 4-3 and
4-4 Cases by long and short dashes, respectively. We can sec that
all of these four results are very close to the theoretical item
characteristic function, except for both ends of the curves.-

In this example of item 6, we can say the curve for Degree 3~4 fits
the best to the theoretical item characteristic function. We
cannot generalize this to the other items, however, and there is no

systematic tendencies as to which of the four cases provides us

with best fitting curves.
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FIGURE 5-12-1

F T ——Tr oy

¥ Estimated Itew Characteristic Purctions of Ttem 6 for Degree 3 (Trianglas)
; ané 4 (Squares) Cases of the Histogram Ratio Approach and Those for Degree
4-3 (Long, Dashed Curve) and &—4 (Short, Dashad Curve) Cases of the Curve

! Titting Approach , with the Two-Parsmeter Bata Msthod.

(v.13) Conditional P.D.F, Approach

In this approach, we use the whole approximation to the

a ; ~
? l ! conditional density functionm, ¢(T|%8) . In the Simple Sum
b : : Procedure, we have for the operating characteristic of the item

i\ ; : score xh

E - H Y

: . J ) A ~ * ~ ~ N " ~ —1 4"
; o (5.47) th(e) - th[r(e)l R B ICIE I ) B 16350 M 3
i | BEX, g=]

- | | g
S ‘ xh-o,l;...,mh . s
k. | In the present study, this approach was frequently used. Among i
é: : others, it was used for the corparison of the results obtained -
f : upon several differeat 01d Tests, which will be introduced in ?
| Chapter 6. ]
- ! It should be noted that we can write for the conditional ;

density of Tt , given %s ’ ;
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'

4 (5.48) (]t = w(%slr) £%(1) [Jf w(%BIT) fx(0) an) ™,

vhere ¢(%slt) is the conditional density of ;s s glven 71 , and

f*%(1) 1is the marginal density of T . From our simulated data,

we can obtain this theoretical density function, by using n(T,C_l)
for W(%Slr) » where C is the target square root of the test
(#0172, and

i
3 information function,

)

| de = Kkq-1

[ (5.49) £h(1) = £(O) o= £(O) C [ Z o 67]

L dr k=0

P 7

b =0.2¢f £ o 6177 for 1(-2.5) < 1 < T(2.5)

f =0

‘ =0 otherwise, ‘§
:

!

( We can replace $(Tl%s) in (5.47) by ¢(Tl;s) thus obtained, and
1

the resultant function is called the criterion operating
This function is the limiting i
{

f characteristic of item score Xy -
case that we can possibly attain by adopting the Simple Sum i

/ ;
Procedure of the Conditional P.D.F. Approach upon a given set of data.

i
- Figures 5-13-1 through 5-13-3 present the three sets of . ]
estimated item characteristic functions of item 6, obtained by the /
Conditional P,D.F. Approach, in comparison with the theoretical
item characteristic function, which is drawn by a thick, solid curve,

{

and the frequency ratios of the correct answer, which are shown by

the combination of long dashes and dots. These resultant estimated

operating characteristics are basad upon the Conditional P.D.F.

; ; Approach combined with the Two-Parameter Beta Method, Normal

kf ‘ Approach Method and Pearson System Method, respectively, In each i

? figure, the result obtained in Degree 3 Case is plotted by long . :
f dashes, and the one obtained in Degree 4 Case is drawn by short, :
H; _ thick dashes, respectively., There is the fifth curve, plotted by ?

a thin, solid curve in each figure, i,e., the criterion item

characteristic function of item 6. It is hard to single it out,

T e e —
o ) \ Ty o e
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ITEM 6

ITEM CHARACTERISTIC FUNCTION

00 ¥ A L = Il ] E.
— 0 29  FiouRe 5-13-1 20 0 ° :

I .
?(x : Estimated Ytem Characteristic Functions Obtained by tha Conditional ?.D.F.

! Approach with the Three-Parzmetar Bsts Method, in Degree 3 (Long Dashes)
> ‘ and 4 (Short, Thick Dathes) Cases, in Couparison with the Criterion Item
3 ! Characteristic Function (Thin, Solid Curve), the Fregquency Ratiocs of the

g
Correct Answer (L-.ng Dashea and Dots), snd the Theoreticsl Item i
,' Characteristic Tunction (Thick, So0lid Curve). ;
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Result of the Normal Approsch Method, in Comparison with the Other Three.
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Result of the Pearson Rystes Method, iu Comparison with the Othar Thrae.
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however, because in each figure the three curves, i.e., the results
of Degree 3 and 4 Cases and the criterion item characteristic
function, are practically indistinguishable. This result is not
unique for item 6, which we have chosen as an example more or less
arbitrarily. 1In fact, for the interval of 6 , (-2.2, 2.7) , the
three curves are practically identical for each of the other

nine binary test items, although outside of this interval of 6
there are some discrepancies.

AEELIEEE St~ & e Pl

The above results indicate the high success of using either
one of the three methods, i.e., Two-Parameter Beta Method, Normal
Approach Method and Pearsbn System Method, in approximating the
conditional density‘function, ¢(Tl%s) . We have investigated the ﬁ
fitness of these curves further, some results of which are
illustrated in Figures 5-13-4 through 5-13-6.

i AR el
i

Figure 5-13-4 presents the regression, E[6|6] , of ability
© on its maximum likelihood estimate & » which is based upon

E
3
:
%l
i,
1
!
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FIGURE 5~13-4

Rogression of Ability © on Its Maximmm Likelihood Estiwste & i
Based Upon the Origiuval 014 Test. g
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5 ‘
the original 01d Test, with the intervals of the standard error,
1/2, on each side, by dots. These values were obtained

[Var.(8]8)1]

: by

,\ . - .

S (5.50) E(t|1) = [ T ¢(rlr) dr ,

3 and 1
1 i (5.51) Var.(rl%) = J’ [T-E(Tl%)]z ¢(t|T) dr ,

where ¢(t|T) is defined by (5.48), with the replacement of T by
8 , and %s by 6 . In the same figure, also presented by

dashed and solid lines are the corresponding estimates in Degree 3

We can see that these three sets of curves are

Y R T

' and 4 Cases.
practically identical for the interval of 6 , (-2.2, 2.0) , and
' then divert from one another outside of this interval. This result

, ‘ proves a high accuracy in the estimation of the first and the

second conditional moments of © , given 8 , which was done by

(3.22) and (3.23), using the polynomial obtained by the method of
g(8) , in both Degree

O R e e
A M R T

i f moments as the estimated density function,
' The differences between the two cases in the

N , 3 and 4 Cases.
¢ f diversion from the true regression outside of the interval of 8 ,
(~2.2, 2.0) , are due to the differences between the two
polynomials around these two areas, which are shown in Figure 4-1-2, ,
!

From the result showr in Figure 5-13-4, we can expect that

the fitness of &(Glés) to ¢(Gl§e) should be better for the f

interval of 6 , (-2.2, 2.0) , than for the range of § outside i

, of this interval. Figures 5-13~5 and 5-13--6 present two examples 5
' of the fitnesses of the estimated conditional density functions to 5

|

I

!

?

the true density function, ¢(6|§8) . These two sets of results
s = 500 , whose maximum likelihood estimates,

T e o

are for s = 50 and

és , are =0.0066 and 2.6346 , respectively,

the theoretical density, ¢(6|és) , is drawn by a solid curve, and
the estimated density functions, $(e|éa) , obtained by the Normal ]

In both figures,
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FIGURE 5-13-5

Conditions) Density of 6 , Given 8 (Solid Curve) and Its Estimates by the
Normal Approsch Method (Dotted Curve) and by the Two-Parameter Bata Method
(Long Dashed Curve), for Degree 3 Case (Left) and Degrae 4 Case (Right) ,
Based upon the Oxiginal 0ld Test. 8 = 850 = -0.0066 .

“Approach Method and the Two-Parameter Beta Method, are plotted by
short and long dashes, respectively, in each of the Degree 3 and 4
Cases. In Figure 5-13-5, we can see that $(9|§s) , which 1s
obtained by the Normal Approach Method, is practically identical
with the theoretical density function, while the one obtained by
the Two-Parameter Beta Method is somewhat different, in each of
Degree 3 and 4 Cases. In this example, Pearson System Method
directs us to the normal distribution in Degree 3 Case, and to the
Type II Beta distribution in Degree & Case. . The normal density
curve in the left hand side graph of Figure 5-13-5, therefore, is
also the result obtained by the Pearsén System Method, and the one
in the right hand side graph 1s practically identical with the.one
obtained by the Pgarson System Method (62 = 2,999) , We can also
see in Figure 5-13-5 that the two sets of results obtained for
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FIGURE 5-13-6

Conditional Density of 0 , Given & (50l11d Curve) and Ita Estimates by the
Mormal Approach Msthod (Dotted Curve) and by the Two-Parmmater Beta Mathod
(Long Dashed Curve), for Degree 3 Case (Laft) and Daegree 4 Cas~ (Right),
Based upon the Original O1d Test, 8§ = Bxgp = 2.6346 .

Degree 3 and 4 Cases are very close to each other.

Tn contrast to this, Figure 5-13-6 shows lower degrees of

fitness of $(6\§s) to its theoretical counterpart, ¢(8\§B) , in

both Degree 3 and 4 Cases. The departure from the theoretical

density function is greater for Degree 3 Case in both results
obtained by the Two-Parameter Beta Method and Normal Approach
Method, which is anticipated from the greater diversion of the
estimated regression of © om 8 from the true regression in
Degree 3 Case, as we have seen in Figure 5-13-4. Pearson System

Method directs us to the Type I Beta distribution (x = -0.010,

By ™ 0.000, 82 = 2.990) in Degree 3 Case, and the distribution

i1s undefined in Degree 4 Case.
We have sampled 42 examinees out of 493, and observed the

fitnesses of the estimated density functions to the true ones (cf.
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RR-78~2). As is expected from Figure 5-13-4, in most cases the

5 results turned out to be similar to the one for s = 50 , which we
have seen in Figure 5-13-5, and in a few cases in which 65 lies
outside of the interval, (-2.2, 2.0) , the results were similar to
the one for s = 300 , which we have observed in Figure 5-13-6,

e T e

Weighted Sum Procedure is an expansion of the Simple Sum
Procedure, in which the estimated operating characteristic, §xh(e),

of the item response x, can be written as

e G Tara e LCMIT

g . &
oy gy Wetmere v

+

v ‘ N
(5.52) B o= I w(i) dliLE wGE I,
*n seXy s=1

By

X, * 0,1,...,mh v

where w(%s) is an appropriate weight assigned to the maximum
likelihood estimate ;s for the individual examinees. Simple
Sum Procedure can be considered, therefore, as a special case of

the Weighted Sum Procedure, in which w(?e) = 1 for all the

T T I T S T e s+
§iomur |
Y e

==

individual examinees,

F 3 |

: Figure 5-13-7 presents the estimated density functions of

51 : ability 8 , which is divided into two portions for the success

and failure subpopulations for item 6, respectively, as the results
of the Weighted Sum Procedure of the Conditional P.D.F. Approach,
which is combined with the Two-Parameter Beta Method. These
results were obtained upon the original 0ld Test, using the area
under the curve of §(8) for the subinterval of § which 1is i

e B . AN

e e e - e

TET IS S

taken from the midway between each 63 and the lower adjacent

value of 69 and ends with the midpoint between és and the upper

; ; adjacent value of és . The result of Degree 3 Case is plotted by
: dots and the one obtained by D2gree 4 Case is drawn by dashes, in

% ; each of the two graphs of Figure 5-13-7. 1In this figure, the

] theoretical portions of the density of ability 6 are drawn by

solid curves, the actual frequencies of 6 by solid lines with
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' Estimated Density Yunctions of Ability 0 Divided into Two Portions for tha Success
and the Fajlure Subpopulations for Item 6 , Obtasined by the Weighted Sum Procedure
of the Conditional P.D.¥, Approach with the Two-Parameter Beta Method, in Degree 3
(Dotted Curves) and 4 (Dashed Curves) Cases, in Comparismon with the Theoretical
Portions of the Density Function (Solid Curves) , the Actual Fragquencies of @
{501id Lines with Dismonds), and the Po-tions for the Criterion Ites Characteristit
Function in the Simple Sum Procedure (Solid Curves with Crosses).

! !
. { ' FIGURE 5-13-7

]é
é
d

s SO

diamonds, and the functions which are the basis of the criterion item
characteristic function in the Simple Sum Proceduré are shown by
s0lid curves with crosses, respectively. We can see in this result
v that the estimated ability distributions are more deviated from the
true ability distributions in Degree 3 Case, in comparison with

: those of Degree & Case. This is not only true with item 6 but is
common among the results obtained for the other nine binary test ‘
items, and also among those obtained by using the Pearson System ’
Method instead of the T™o-Parameter Beta Method., This diversion
is due to the fact that we used the areas under the estimated
density function, g(8) , as the weight, w(és) ,» and the
discrepancies of g(8) from the true density function in Degree 3

i

Case are greater than the one in Degree 4 Case, as we have seen in

e Ol i RN s 2

. -t em. . R
- L
——— -

AR e

R T R Ly
N L p e L e e Ny
& e N R R A

R TR RO e TR




b i

R 504

g

T e et

e T o

Eac To e

Pabaer by, = AR Y of

TR TR T~

-82- v-37 L

Figure 4-1-2,
Figures 5-13-8 and 5-13-9 present the resultant estimated ]

item characteristic functions of item 6, in Degree 3 Case by dotted

curves and in Degree 4 Case by long, dashed curves, which were

obtained by the Pearson System Method and the Two-Parameter Beta 3
Method, respective;y. In these figures, also presented are the

theoretical item characteristic function of item 6, the proportions

correct of ¢ , and the criterion item characteristic function ,

obtained by the Simple Sum Procedure, by snlid curves, solid lines

with diamonds, and solid curves with crosses, respectively. We

can see in these two figures that the results obtained in Degree 3

and 4 Cases are practically identical, in spite of the differences k
between the two sets of estimated portions of the density function ‘
of ©® , as we have seen in Figure 5-13-7. This turned out to be i }

£ 5

ITEM CHARACTERISTIC FUNCTION
5 8

LATEMY TRAIT @

FIGURE 5-13-8

Estimated Item Characteristic Tunctiovos of Item 6 in Degres 3 (Dotted Curve) and 4

(Long, Dashed Curve) Casty, Obtainad by the Waighted Sum Procedurs of the Conditional

P.D.F. Approach with the Pearsoco System Method, in Comparizon with the Theoratical

Item Characteristic Function (Solid Cuzva), the Frequeucy Ratios of © (Solid Line

with Dismonds), and the Critarion Ites Characteristic Function in the Simpla Sum
Procedure (S0lid Curve with Crosaes).
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FIGURE 5-13~-9
. Butimated Itewm Cheracturistic Punctions of Item 6 in Dagres 3 (Dotted Curve) and &
(Long, Dashed Curve) Cusss, Obtained by the Weighted Suw Procedure of the Conditional
P.D.¥, Approach with the Two-Parasater Beta Method, in Comparison with the Theoratical

Ttew Charsctaristic Punction (Bolid Curve), the Yrequancy Ratios of @ (S8o1id Line
and the Criterion Item Charactexistic Function in the Simple Bum

/

' :

{ with Dismwounds),

' Procadure (Solid Curve with Crosses).

true with every binary test item for the interval of 6 ,
(~2.2, 2.2) , in both results obtained by the Pearuon System Method

' and by the Two-Parameter Beta Méthod. . We also notice that these two
sets of results obtained by the two different methods are very

ot S FCN

A T

b

E\ rlose to each other for this rauge of 6 , and, again, this is

F' ! true with all the other nine binary test items. There are some

E‘ ; discrepancies between these results and the criterion item é
5‘ L, characteristic function obtained by the Simple Sum Procedure, ;
1 j however., Since the estimated item characteristic function ?
§ obtained by the Simple Sum Procedure with either one of the three 4
: § methods, 4.¢., Pearson System Method, Two-Parameter Beta Method §
a ‘ and the Norwal Approach Method, is practically identical with the §
% 3 corresponding criterion item characteristic functions for each of

; ' the ten binary test items, as we have observed ecarlier in this
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section, the above discrepancies also exist between the set of
estimated item characteristic functions obtained by the Weighted
Sum Procedure and the one obtained by the Simple Sum Procedure.

In this example of item 6, we can see that the results obtained by
the Simple Sum Procedure fit better to the true item characteristic
function, than those obtained by the Weighted Sum Procedure. This
fact cannot be generalized to all the other nine binary test items,
however. For instance, for item 10, the results indicate that this

order is reversed.

If we repleace $(T|%s) in (5.52) by its theoretical
counterpart, ¢(r|?s) , which is given by (5.48), we obtain a kind
of criterion operating characteristic in the Weighted Sum Procedure.
Since we still use the weight obtained from g(8) 1in our example,
we shall call it pseudo-criterion item characteristic function.
Actually, we can obtain more than one such functions, depending
upon the approximations used for g(8) . We obtained three pseudo-
criterion item characteristic functions for each of the ten binary
test items, using the three polynomials of degrees 3, 4 and 5, which
were obtained by the method of moments and are illustrated in
Figure 4-1-2, These three pseudo-criterion item characteristic functions
turned out to be very close to the two estimated item characteristic
functions of Degree 3 and 4 Cases for each of the ten binary test
items, the result which supports the usefulness of the three
different methods of approximating the conditional density, ¢(T|;B).

Proportioned Sum Procedure has a somewhat different rationale

from those for the other two procedures. Let p(sexh) be the
probability with which the examinee s belongs to the subpopulation
Xy . We have for the estimated cperating characteristics, ﬁxh(e) ’

of the item response X, to item h .

N N
(5.53) B(8) = I plsex) $it|T) [ T $Cr]irt ,
* s=1 *n | 5 em1 | 8

xh-O,l,...,mh ’
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gﬂ i’ where ﬁ(sexh) is the estimate of the probability p(aexh) » Wwhich
g : satisfies
- - (5.54) zh ﬁ(sexh) - gh p(sexh) -1
xh-O xh'O

Figure 5-13-10 presents the four different estimates of
. p(sexh) for item 6, which were used in the present atudy. Our
" basic data are, again, the set of five hundred maximum 1ikelihtood
- estimates obtained upon the original Old Test. These four
. estimates of p(sex,) are the proportions of the examinees who
E belong to the subpopulation X within a more or less arbitrarily
chosen interval of 6§ . The first and second estimates, which are

A
A

.4

plotted by solid triangles and crosses, respectively, in

Ak [ S

{ :
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FIGURE 5-13-10

! four Different Estimetes of p(ltlh'l) for Item 6 , L.a8., ths Preporticas of the

4
Examinees Who Answared Covrectly to Ytem 6 within the Interval 6. 0 (Sol14d
Triangles), Those within the Iaterval 6. t 20 (Crosses), and the Corresponding

Results for Which the 61 .Equally Spaced Values of § Wers Used Instesd of the
500 Valuas of 5. (Dot und Dashes, Raspectively).
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Figure 5-13-10, are the proportions of the examinees who belong to

the subpopulation xh-l within the intervals, 63 t o and 53 t 20 ,

respectively, where o = 0.215 . The third and fourth cnes, which

are drawn by dots and dashes, respectively, arec the same as the first
two, but are assigned to the sixty-one equally spaced values of 0,
iustead of the five hundred observations, 5‘ 's . We notice that
these proportions themselves can be crude estimates of the operating
characteristic of X0 1f we correct the scale of 8 using the
method suggested in Section V.2 . With our data, the ratio

of the standard deviation of 6 to that of 6 {s only 1.011

(cf. RR~78-5) and the regression of 6 on 6 is approximstely
linear for the interval of & , (-2.2, 2.0} (cf. Figure S-13-4).
For these reasons, the item characteristic function of item 6 is
drawn without corvection in Figure 5-13-10, for a rough comparison.

Figures 5~13-11 and 5-~13-12 present the resultant estimated
item characteristic functions of item 6 obtained by the Proportivned
Sum Procedure which is combined with the Pearson System Method and
the Two-~Parameter Beta Method, respectively, using the first two

ﬁ(sexh) 's , for Degree 3 and 4 Cases. In these figures, the
results obtained by using the first and second ﬁ(uexh-l) ‘a for
Degree 3 Case are plotted by dots aud medium dashes, and those for
Degree 4 Case are drawn by short and long dashes, respectively,
together with the theoretical item characteristic function of item
6, the proportions correct of ¢ , and the criterion item
chavacteristic function obtained by the Simple Sum Procedure, which

are drawn by solid curves, lines with diamonds, and curves with

crosses, respectively. We can see in each of these two figures

that the four results are very close to each other, and also to the

criterion item characteristic function obtained by the Simple Sum

Procedure, for the interval of 6 , (-2.5, 2.5) . This is a common

tendency among all the ten birary test items, although for some

items they are not as close as those for item 6. It is also noted
that these two sets of results obtained by the Pearson System

Method and by the Two-Parameter Beta Method are very close to each
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FIGURE 5-13-11

Kstimated Iltem Charactaristic Punctions of Item 6 Obtained by the Proportioned Sum
Procedure of the Conditicmal P.D.F, Approach with the Pearaon System Method , by
Using tha Proportions for 0. %1 ¢ in Degree 3 (Dots) and & (Short Dashes) Cases,

1 and by Using Thoss for 5. t 20 in Dagres 3 (Medium Dashes) and 4 (Long Dashes)

Casas, Respectively. They Are Comparsd with the Theoretical Item Characteristic
Function (Solid Curve) , the Frequency Ratios of 6 (Solid Line with Diamonds), !
and the Criterion Item Characteristic Function in the Simple Sum Procedure
(5011¢4 Curve with Crosses).
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other. This tendency is common to all the ten binary test items.

1f we replace a(rl%s) in (5.53) by the true density,

¢(Tl§8) , we can obtain the pseudo-critecion operating
In the present study, four different

£ .
TR e s e e

A e v B i D e L

[ . characteristic of x, .
‘ pseudo~criterion item characteristic functions were obtained,

5 | using the four different estimates of p(sexh-l) » Wwhich we have

observed in Figure 5-13-10., The resultant pseudo-criterion item

4 :
" ! ; characteristic functions turned out to be very close to the
; estimated item characteristic functions obtained by using the same

' ﬁ(sexh-l) , for each of the ten binary test items, the fact which f
of both Pearson System Method and

supports the usefulness

e ..

J i : Two~Parameter Beta Method.

PN

The estimated ability distributions for the success and the
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ITEM CHARACTERISTIC FUMLCTION
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| FIGURE 5-13-12

| Tstimated Item Characteristic Punctions of Item 6 Obtasined by the Proportioned 5Sum
i i Procedure of the Conditional P.D.F. Approach with the Two-Parsmeter Beta Msthod, by
‘ Using the Proportions for 5' 2 0 4in Degree 3 (Dots) and 4 (Short Dashas) Casus,

and by Using Those for 6. %+ 20 4n Degree 3} (Medium Dashes) and 4 (Long Dashes)

i

B Cases, Respectively. They Ars Compared with the Theoretical Itam Characteristic
t Fuaction (Solid Cuxrve), The Fraquency Ratios of 0 (Solid Line with Diamonds ),
| and the Criterion Item Characteristic Punction in the Simple Sum Procadure

| (8c11id Curve with Croswses).
i
!
i

—~
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i ! failure subpopulations for each item turned out to be very similar
. to those obtained by the other combinations of an approach and a

¥, ;

y ; method, for both Degree 3 and 4 Cases.

Figure 5-13-13 prescuts tue estimated density functions for

: the total population, which were obtained by the Two-Parameter Beta
Method, usiug 58 £ 0.215 as the inter al for computing ﬁ(aexh-l) ,

O

3 | in Degree 3 and 4 cases, by dotted and dashed curves, respectively,

2 i )
£' i together with the theoretical density, £(8) .. We can see in this ;l
E ; figure that these two vesults are close to each other, snd reasonably '

close to the uniform density. The corresponding results obtained by

oA

using the interval, és + 0.430 , turned out to be very close to

; these results.
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0.6
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DEMSITY

0.2

i 0.0
40 30 20 -0 00 10 20 30 40

LATENT TRAIT @
FIGURE 5-13~-13

Estinmated Density Functions of Ability o , Obtsined by the Proportioned

Sum Procedure of the Conditional P.D.F. Approach with the Two-Pasasetex
Beta Method, by Using the Proportions for the Interval, és t0, in

Degree 3 (Dots) and Degree 4 (Short Dashes) Cases, in Compsrison with
the Theoretical Density Punction.

‘ ! We have also obtained the corresponding four estimated density
funciions by the Pearson System Method. The results turned out to be

fairly close to those obtained by the Two-Paramcter Beta Method. In

fact, all the other results obtained by the oth. - approaches turned

: . out to be similar, with some deviations, i.e., some of them are a

little closer to the theoretical density function, and some of them

! are a little less close,

. (V.14, Remark on the Approximation of ¢(T|f) by a Normal
ol Density Function ”

We have seen in the previous sections that, in spite of its
relatively restricted shape of the normal density dunctiom, .- -mal
Approach Method works just as well as the other two methods, i.e.,
Pearson System Method and Two-Parameter Beta Method, in approximating
the conditional density function, &(t|f) . There is a good reason

behind this fact, which we shall observe in this section.

Suppose that the density function, £*(1) , is uniform for

| .
‘ a certain interval of v , [E,T] . Then we can write

.

[N

j RN §
B .
Pesg
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T
(5.55) (|2 = Y(R|1) £*(1) [f W&l ex(r) ar]”t
T

T
- (¢ [f p&{0) ], for TeT<T .

I

Since we have
(5.56) v@lD = @2 axpl 2|12 /(20%)]
- (2my~1/2 gL expl(t])%/(26%)] ,

from this and (5.55), we find that ¢(1|€) is a truncated normal
density function. When ¢ is small, for a wide range of T , this

is practically equal to the complete normal density function, which

is given by the rightest-hand side of (5.56). Normal Approach Method,
therefora, must work well in this situation.

If the marginal density, f£*(7) , 1s a normal density function
with ¥ and §{ as its two parameters, then the joint distribution
of t and ? will be the bivariate normal listribution, with u and
(c‘:2+t;2)1"2 as the two parameters for the marginal demsity functionm,

g(?) , and

(5.57) o = g(otg?)~1/2

as the fifth parameter. Thus the conditional density, ¢(T{?) ,

is a normal density function, with (c2?+ozu)(02+;2)'1 and

oy (o24g2) "L/
These two facts indicate that, if the distribution of T {is

close to either a normal distribution or a uniform distribution, or

between the two, Normal Approach Method will work well in

approximating the conditional density functiom, &(T[%) .

as the two parameters.
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VI Estimation of the Operating Characteristics of the Discrete
Item Responses and That of Ability Distributions: III

Following Chapters 3 and 5, in the present chapter, we shall
integrate the results and findings of the part of our research under
this title. It also includes certain observations about tests in
general, objective testing, ethics behind Bayesian estimation, and
some other related tcpics. The main subject in the preseant chapter

ll :
; 1 is to find out how small the number of test items can be in our 0l1d
Test. Alternative estimators for the maximum likelihood estimator will

L]

: be introduced, which <~an be used when the amount of test information of
our 0ld Test is not large enough for the entire range of ability 6 of
our interest, and, consequenti&, there exist more than a few positive
and/or negative infinities for the maximum likelihood estimates of

R S

ability of our examinees.

: (Vi.1l) Objective Testing and Exchangeabil

! Equal opportunities have been considered to be ethical in our

i society. In personnel selection, for example, we are supposed to

i make our decisions which are based upon the applicants' capabilities,
i but not upon their etunic backgrounds, ages, sexes, and other

: attributes which have little to do with their capabilities for a

| specified job. The translation of this equal oppovtunity principle
to testing will be that we should: 1) develop and use valid tests for
the selection purpose; 2) objectively analyze.fhe results of the
tests; and 3) make our recommendations as to which applicants should
be accepted and which should be rejected on the basis of these

A i A ot . b o

o rmivda,

objective findings only. |

Although the above first and third statements are readily

accepted Yy people in general, including researchers, for some reason

¥ ar—. 1

the second statement has attracted little attention. Note, however,

fia slatam

that this is the part that researchers should be most responsible for.

a5y
. . .
JU T PO Y

Bayesian estimation of ability has been accepted for many years
as a valid method by researchers. This fact does not justify, however, i;

certain serious flaws Bayesian estimation has, which are clearly
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. T e e e e e -—
Cee e e .t —— - - U P 2
- : R R e ' .
WL R R T JRT S L N v N ; :

5T e g e e o -
. . kgt Pk b N ) ¥ T
# v e N SN D e e A e AT 2 N T et R g e

Vel e »u‘




i - e e R R i e [ e
W R TR T st ey e

: -93- Vi-2

S . against the principle of objective testing. It assumes the

: exchangeability of individuala who belony to a certain subpopulation,
and usas the sbility distribution of the subpopulation as the prior.

Let us assume that we have two ethnic groups, A and B .

Figure 6~1-1 presents the priors of thess two hypothetical ethnic
The basic idea behind

subpopulations with respact to ability 6 .
the Bayesian estimation is that, within sach ethnic subpopulationm,
Are they really?

A or B, the individuals are exchangaable.

Suppose that we fix the level of & at eo , @ 13 indicated in

: : Figure 6-1-1, If we consider the subset of individuals whose ability

ETHNIC GROUP A ETHNIC GROUP B

T T e T e ma— e

DENSITY
g

L coaliibe

"y

40 30 20 10 00} 10 20 30 40
)
0

i

FIGURE 6-1-1

Density Punctions of the Ability Distributions of Two Hypothetical Ethnic
Crovps, A and B ,

G . i Gy .

! levels are uniformly 6, , they will include certain people from the

1 ethnic group A , and also certain other peéple who belong to B .
Our best commnon sense tells us that these individuals are the people
who are exchangeable. In the Bayesian estimation, however, they are
not; in its logic, those who belong to A are exchangeable smong

5 themselves, and so are those who belong to B ., ‘

Al SRS .

o

In order to observe this issue from a somewhat different angla,
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we shall consider a real test, LIS-U (Indow and Samejima, 1962,
1966; Samejima, 1969, RR~80-3). Figure 6~1-2 presents the test
information function and ite square root of LIS-U by solid and

A

i 40 -30 20 10 00 10 20 320 40
' LATENT TRAIT ©

FIGURE 6-1-2

‘ Test Information Punction (Solid Line) and Its Square Root (Uotted Line) of LIS-U.

o

% dotted curves, respectively. The test consists of seven binary
items, which make a fairly short test. Bayes modal estimator
(Samejima, 1969), év , of abildty © is the modal point of 8 for
l the function Bv(e) such that

P s AT

' 1 (6.1) B,(8) = P, (8) £(8) .

PRS-y ik A .

i |
‘- ; This estimator was adopted as the estimator of ability 6 , using
| v
; the density function of the ability distribution, £(8) , as the
: prior, for each of the 27 = 128 response patterns. The regression

e s =

of 3 on ability 6 is given by

PRI

(6.2) £[8le] = z §, py®) .
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Figure 6-1-3 presents the four regressions of 8 on 8 using the
four different priors, =n(0.0,1.0), n(-1.0,1.0), n(1.0,1.0) and
n(0.0,0.5) , by solid, long dashed, short dashed and dotted curves,

respoctively. Let us assume that the second prior is for the

| SS—y
®

o m L f

#
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FIGURE 6-1~3

[ RPN
.

FYour Regrussions of the Bayss Modal Estimats on Ability Based on
' LIs~U , with the Priors, n{0.0,1.0) (Solid tine) , u{~1.G,1.0)
{ (Long, Dashed Line), 0n(1.0,1,0) (Short, Dashed Lins) , and
. n{0.0,0.5) (Dotted Line) , Respactivaly.

! ethnic group A , and the third prior is for the ethnic group B , and
60 = 2,0, We can see in this figure that, for two individuale, whose

ab.lity levels are uniformly ea but belong to the ethnic groups A

and B , respectively, the distributions of the Bayes modal estimate,
] , are different, and their expectations are approximately 1.0 and

(~Abncapi mtmimed

1.6 , respectively -—- a substantisl différence!

Let ueg assume, further, that the first and the fourth priors
If the first individual of the

* St
s

are for men and women, respectively.
above two happens to be male, then, uwsing n(0.0,1.8) as the prior,

his expescted Bayes modal estimate is approximately 1.3 . Which
ghould we take for this first individual, 1.0 or 1.3 , as the
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expected value of his ability estimate? This individual will obtain
a higher score if the prior for men is used than if that of the
ethnic group A 1ig uged. Perhaps he would rather be treated as a
man than as a member of the ethnic group A . If the second
individual happens to be female, then her expected Bayes modal L ;
estimate becomes approximately 0.7 . Again, there are two expected
: , values for her, 1.6 and 0.7, and she will obtain a higher score

i ; if she is categorized as a member of the ethnic group B rather

f‘ ! than as a woman., If we use the second priors for the two

FoT individuals, the expected Bayes modal estimates are 1.3 and 0,7 ,
i.e., the reversal of the order from that of 1.0 and 1.6 ! Thus, f {

: 1f we take the first set of priors in selection, then we will be

f saying, "If there are two people whose ability levels are exactly

the same and at 2.0 , then we will accept the one from the ethnic

group B ," If we take the second set of priors, then we will be

i saying, If there are two such individuals who happen to be male and

female, then we will accept the man and reject the woman." We will

be very likely to accept the second individual if we tgke the first

set of priors, and, if we take the second set, then it will be highly

probable that we accept the first individual and reject the second. !

This is what it amounts to when we use a Bayesian estimator of g

A R e

T g e ey v,

e ety e

‘ ability in our selection. ('

A solution for this chaos will be to divide each ethnic group
further, to make four groups instead of two, i.e., ethnic A and ;
male, ethnic B and male, ethnic A and feamsile, and ethnic B and
female., It shouid be noted, however, that every individual has much .
more than two casual attributes like his or her ethnic background
and sex, and similar problems will happen for these four groups. ;
Then we may need eight groups instead of four, sixteen, thirty-two,
etc. In this way, we will reach, fairly soon, the conclusion that
each individual has his or her own prior, or each prior includes only
one individual. Then Bayesian estimation may finally be Justifiable
and useful. In such a case, however, why do we need testing at all ’ £
if we know about each individual's ability so well? In most cases L
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3 : we do not, and that is why we need testing.

The flaw of the Bayesian estimation comes frem the fact that
it deals with a group of individuals who are not exchangeable as if
' they were exchangeable, and treats those who are exchangeable, 1.e.,
individuals whose ability levels are exactly the same, as if they
waere not exchangeable. This is against the principle of objective
: testing. It is a typical example of failure in objectively
} ‘ snalyzing the results of testing.

TR e e L

(V1.2) Every Test Has a Limitation

|
g We can see in Figure 6-1-3 that for the values of ability
x ' , 6 , approximately, greater than 1.0 and also those, approximately,
}' - less than -1.0 , there are little changes in the regression of 8
on 6 , for each of the four different priors. In fact, the
; j . conditional distribution of the Bayes modal estimate, 8 » given o ,
; { ' 7 approaches the one point distribution at the modal point of 6 for
the product, PV-min(e) £(6) , as © tends to negative infinity, and
- it approaches the one point distribution at the modal point of © '
g j f for the product, Pv-max(e) £(8) , ag & tends to positive infinity, .
F : where V-min and V-max indicate the two extreme response patterns,
3 i f (0,0,,..,0) and (ml,mz.....mn) + This means that for these
outside raunges of ability 6 LIS-U is powerless, and it is the
priocr that takes the essential role in determining the value of the
- ' Bayes modal estimate. It is as if the examinee were cheated,
obtaining something other than the information the test itself has

- it e g -

provided, ;
! 5 We must accept the fact that every test has a limitatior as

; i to the range of ability which it can measure. Escaping to priors will

by no means enhance this range, but will impose the biaﬁ which was ?
described in the preceding section. No single test has an infinite g
number of teat items, so it should not be expected that any test can g
) ’ measure an unlimited range of ability. f
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(Vi.3) Altdbrnative Estimators for the Maximum Likelihood Estimztor

A question will arise as to whether there is any way to
v enhance the range of ability for which a specified test is powerful,

without depending upon priors or any other :asources of irrelevant
information. This can be done by replacing negative and positive

: infinities of the maximum likelihood estimates for the two extreme

i regponse patterns, V-min and V-max , by some appropriate finite

| numbers. In search of such alternative estimators, our gozal was to

’ find suitable substitutes which do not depend upon any specific
populations of examinees, but are population-free, unlike Bayesian

estimators.

‘ - It is desirable that such alternative estimators provide us

) : with the conditional unbiasedness, given ¢ , as is the case with

i the maximum likelihood estimator in the limiting situation where

i we have infinitely many test items. We notice that the operating

: characteristic Pv-min(e) strictly decreases in o , and PV—max(e)
strictly increases in ¢ , as long as our test items follow a model,
\ or models, like the normal ogive and logistic wodels. Thus we can
conceive of a critical point, B, which satisfies

- : P (6) 2 0 for 8 > 8
¢ ‘ (6 . 3) { V-min c

P (6) 0 for (6 £ ec .

V-max

Figure 6-3-1 presents the operating characteristics of the
Z‘ s two extreme response patterns, Pv—min(e) and Pv—max(e) , of

; LIS-U , by solid and dotted curves, respectively. The critical
l | value, ec s was obtained in such a way that the product of these
f ; two operating characteristics be maximel at this point, It turned
out to be ~0,0088 ,

i o We shall aim at finding finite substitutes for the two

maximum likelihood estimates, év-min and 6V-max , which are

' negative and positive infinites, respectively, in such s way that

t’:
fi ' "4 the substitution should provide us with a regression which is close
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FIGURE 6-3-1

Operating Characteristics of the Two Extreme Rasponse Patterns,

(0,0,0,0,0,0,0 ) (Solidlina) and ( 1,1,1,1,1,1,1) (Dotted
Line), of LIS-U , and the Position of the Criticel Value oc .

-5.0

“enough to 6 , i.,e., the unbiasedness of the estimator, for some

* *
range of 6 . Let ev-min and ev-max denote such estimates,

and 9% be the resultant estimator, such that

* -
- eV-min for V-min
* - Q%
(6.4) o 0¥ ax for V-max
- éV for all the other response ]

patterns.

e~

We can write for the regression of 65 on ability 6 such that

(6.5) E(6x|6) = T 8, P (8) + ek P ()
v VdV-min V'V V-min “V-min
WV-max

e L

P (e)

+ 8 V-max

* »
Vemdx

e e na .

T o e et b g st o o x o
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[ 4 V#VEmin 6y Py(6) + OF_ . Py 14, (®)
V#V-max
< for 06 ¢ 6
c
& X 8., P_(8) + 6 P )
\ VéV-uin vV V-max ~V-max
VeV-max

for 6 > 0 .
c

If this estimator, a& , Provides us with an approximate

unbiasedness for a certain range of 6 , (9,3) , then we shall

be able to write

(" VfVEmin eV PV(e) + eG-min PV--min(e) =
V#V-max
for 9 <6< 8
(6.6) { c
V#VEmin Oy Py(8) + 8% o Pypax(®) * 8
\ V"V-max : _
for ec <9 <0 .

In practice, we must search the interval of 6 , (2,5) » for
is available, in relation with a

which such an estimator, &% ,
From (6.6), we can further write

apecific test of our interest.

9 6
a c * ¢
L ev I Pv(e) de + eV-min { Pv_min(e) a8

Vy¥V-nin 8 [
ViV-max
RO
6.7) ﬁ ¢
. I A 8
T 0 P . (08) 46 + 6* P {(6) 46
VaVemin v 8 v V-max ec V-max

1 2 2
& = (6% - @8
2< C).

et
R
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gf: i
; & * x .
‘ Thus the two estimates, eV—min and ev_mx , can be obtained by
: 12 . g2 i %
; X = [=(8% = §%) =~ X 6, P _{(8) d6]
V-min 27¢c =~ VéV-min ¥y [ v

o

VeV~max
( ec -1
S NIRORD

(6.8) /

wl

with some appropriate values for 6 and 8 .

F [ ‘ We used cleven different sets of 6 and 8, +1.50 , %1.75 ,

I +2.00 , 2,25 , +*2.50 , %#3,00 , %3.50 , #4.00 , *4.50 , %5.00 , i

: and 15.50 , for the purpose of experimentation. The resultant set
X

» Which was obtained by using ’
Figure 6-3-2 i

| ! -

v ’ % sk

» . of estimates, 6§ . ~and O}
j each of these eleven intervals, is given in Table 6-3-1,

E. ! illustrates the regruesions of QGumin ou 6§ , obtained by using

(-1.5, 1.5) and (-2.25, 2.25) , respectively, as (§,8) , by

1

i

1

|

1]

s0lid and dashed curves: The valuas of ea-min and egrunx ]
|

i

|

'~! : turned out to be ~1.47883 and 1,52237 4in the former case, and

! : -1,79255 and 1.77649 in the latter, as we can see in
' Table 6-3-1, In the same figure also presented are the unbiasedness
line, i.e., the line which passes the origin with the angle of 45

!

. et

i degree from the abscissa, and the regression of the Bayes modal

i estimate with the prior, n(0.0,1.0) , by a solid line and a dotted
curve, respectively. We can see in this figure that, within each ;

; § interval, each of these two regressions is reasonably close to the 3
‘ : unbiasedness line, and much closer than the regression of the Bayes' g
!

!

1

!

modal estimate. If we enhance the interval further, the deviation
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TABLE 6-3-1

B S R et

Kleven Sats of Bstimates, 6% . =~ smd €F

' of Ability for the Two Extrema Response Patterns,
: (0,0,...,0) smd (1,1,...,1) , Obtained on LIS-U,

g’l Using Eleven Diffarent Intervals for (6,0) . Z.i
L b
E i 8,8 | %an %3 -max l;
! : £1.50 | -1.47883 | 1.52237 ‘
?l é £ 1.75 | -1,64702 | 1.65605 z:
s i £ 2.00 | -1.79255 | 1.77649 !
E £2.25 | -1.92540 | 1.89233 "
;,’E ( £ 2,50 | =2.05136 | 2.00754 i
: ; £3.00 | -2.20490 | 2.24127 :
{ ; £ 3,50 | ~2.53641 | 2.48011 3
3 ! + 4,00 | -2,77945 | 2,72254 ,
i £ 4.50 | =3.02430 | 2.96720
“ b 5,00 { -3.27051 | 3.21329
;ﬂ | t 5.50 | -3.51765 3.46032
L
] i
; é from the unbiasedness line becomes larger (cf. RR-80-3). Since the {
' i least finite value of the maximum likelihood =stimate for LIS-U is )
i ~1,3167 for the response pattern, (0,0,0,1,0,0,0) , and the !
é é greatest finite value ig 1.3028 for (1,1,1,0,1,1,1)., either one :
i‘ - o of the above sets of 93-m1n and e#—max will be adequate, and ‘
’ ' so 1s any of them obtained by using intervals between (~1.5, 1.5)
; | and  (-2.25, 2.25) .
A i The introduction of the new estimator, 96 » has enhenced

the range of ability for which a given test is meaningful without
sacrificing the objectivity of testing, as Bayesian eatimates do. i
When the number of items is as small as seven and all items are f
binary items, as is the case with LIS-U , the computation of

and 6% is relatively easy, owing te the fact that

*
ev~m1n Vemax
the number of all possiblie response patterns is as umall as 128 .,
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FIGURE 6-3-2

Two Regressions of tha Modified Maximum Likelihood Latimata,
o4 . on Ability 0, Using (=-1.5, 1.5) (Dashed Curva) and

(-2.25, 2.25) (Sol1d Curve} as (8, §) , Together with the
Regression of the Bayas Modal Estimste with n(0,1) as the
Prior (Dotted Curve) .

Note, however, that the increase in the number of items, and/or in
the number of item scores for each item, will soon make it
practically impossible to compute these two substitutes estimites,
since the number of all possible response patterns will increase by
gigantic steps., For example, if a test has ten binary items
instead of seven, the number of all possiblie response patterns will
be 1,024 ; if a test has seven three-item-score-cstegory items,
the number of all possible response patterns will be 2,187 ; if a
test has fifteen three-item-score-category items, it will be as

large as 14,348,907 |
It is necessary, therefore, that we invent soms method to




=104~ Vi-13

deal with the situation in which the number of all the possible

response patterns is too large for us to compute e%-min and

0% directly. By virtue of the availability of electronic

. V-max
5 computers and the Monte Carlo method, this can be done by

introducing the sample statistic versions of the two estimators.

- Let N be the number of examinees who were selected ;
f randomly from the uniform distribution for the interval of o , ; !
; (2,5) « Let NL Jdenote the number of examinees who belong te the

|
; above sample and whose levels of ability are lower than the - ?
be of that of those whose ability

Thus we can write

critical value ec , and NH
levels are higher than, or equal to, Sc .

|
l ~
.‘ (6.9) Ne X +N, . ]
; B
f Let N, and K. denote the numbers of examinees who obtained v i
! the response pattern V , in the above two subgroups of the sample, } T
f respectively. Thus we have 7
! N - 3 N, il;
] N,= I N . -
| oy W ]
. | 9c ]
: | It can be seen that the sample statistic corresponding to Pv(e) de -
i 6 P
} ~ } -1 -
; 3 in—che formula (6.8) is N (6 - 8) N~ , and also the one for }}
h : ) r
5 ! 3 . -1 /
E | fe Pv(e) d6 is NHV(G ec) NH + Substituting these sample .
[ | e : ' : \ -
. % %*
b ; statistics into (6.8) and rearranging, we obtain ev—min and év-mnx }
E such that '
i u
' (Bnta = GO+ O N - T B nyln, o i~
g V#V-min ~min .
1 (6.11) VéV-max f
a 1,z A -1
* = [z(6+08)N, - I 6, N_.]
eV—max 2 ¢’ H VéV-min Vv "HV NHV~mnx .
Vy§Vamax 1

;
L
]

; i
‘) xmw.”.i v
sy Ny G o . T e
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;. ! where NLV—min and Nﬂv—ma are the numbers of examinees who
belong to the lower subgroup and obtained tlie response pattern

V-min , and those who belong to the upper subgroup and obtained

the response pattern V-max , respectively.

[ ‘j

R 1 A* A*

E ! It can be seen that ev-min and eV-max » which were
b ' defined in the preceding paragraph, are consistent, or comverge in
» respectively, as the sample

' * *
probability to Bv I and ev
and

,;- i
¢ | ; sizes increase. In other words, if N , N, , N, .o X
b ‘ N are large enough, the probabilities with which e&—min

; l HV-max
It 1

V. ! * *
ﬁ | f and 8% = assume values within the vicinities of 6f .  ~ and
f ! ' 06 % * respectively, will be very high. Although the two

: ; ~ma

/ ! ? numbers, N .o _and Nov_max * 8180 depend upon the choice of
| | the interval, (9,6) , by virtue of the Monte Carlo method, we can

control the two sample sizes, NL and NH , a8 we wish.

g% g%
A procedure wich which we may obtain 8% min and ev—mnx

which are defined by (6.11), can be summarized as follows.

|

|

!

|

[

|

j ‘ (1) Determine the interval, (8,8) .
E (2) Obtain the critical value, 6_ .
i

; (3) Determine the sample size, N , which makes both NL and
| N,, large enough for our purpose.

Plaaiia A sl

o B
. é (4) Produce the ability levels of these N hypothetical
e ' subjects from the uniform distribution for the interval,

(8,8) . This can be done either by the Monte Carlo

i
method, or by placing the N examinees at the equally
(9,3) » Or using

spaced points in the entire interval,

. i ;

one of its variations.

! (5) Calibrate by the Monte Carlo method a response pattern
for each of the N hypothetical examinees with respect

to the n test items of our test.

(6) Find out the two frequencies, NLV and NHV , for each

—
T K Sl e R s i
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response pattern V .,

(7) Obtain the maximum likelihood estimate év for each
response pattern whose frequencies, NLV and NHV , are
not both zero, excluding V-rin and V-max .

(8) Use the above results in (6.11), and compute §§-min and

*
eV-max

Note that the probabilities with which we obtain positive frequencies

for NLVamax and Nﬂv-min are both negligibly small, and this

fact can be used as a checking process.

Thus we can define the new estimator, 55 » such that

B -
- ev—min for V = V-min
Bk | m O% = Ve
(6.12) GV ev-max for V = Vemax
- év otherwise,

as distinct from 66 » which is defined by (6.4). Unlike 9§ .
this estimator, B

L depends upon the Monte Carlo method, and,
therefore, it has some fluctuations. In order to reach high
accuracies, we need large numbers for NL and Nﬂ .

(VI.4) 3Bayes Estimator with a Uniform Density as the Prior

Let uiv be the Bayes estimator with the prior, fv(e) .

We can write

(6.13) u:'w- ; efv(e) de ,

~

where fv(e) is the density function of & for the subgroup of

et L

P —y

T

r

examinees whose response patterns are uniformly V , which is given

by

S - a O e

Rt

& -y
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® -1
(6.14) fv(e) = £(0) Pv(e) { [-“ £(6) rv(e) de] .

This estimator is the one which makes the mean square error, such

that

(6.15) Q= El(op - 7] ,

-

winimal (Samejima, 1969), where GG* is any conceivable estimator

of 6 based upon the response pattern V . It is obvious that

this estimator heavily depends upon the prior.
We can think of a population-free @stimator based on the Bayes

estimator, by removing the influence of a particular prior. Let

us assume that we can more or less specify the interval, (9,5) ,

for which our test is meaningful. To lift the effect of a given

prior, we shall use the uniform density for this interval of 6 .

Let u{& be the resultant estimstor. Thus we have

, - (-9t for 8040
(6.16) £(8) {

= 0 otherwise.

Substituting (6.16) into (6.13) and rearranging, we obtain

(® 8 -1
6.17) - ¥ 0 2, (8) de [je NORD

Note that this estimator depends solely upon the operating
characteristic, P, (6) , and the interval, (9,8) , for which our

test is meaningful,

In praatice, it may not be wise to use this estimator, since
even with a relatively small number of test items the number of
response patterns is so large and the calculation of the estimates

- ]
is time-consuming. We could use two estimsates, ulv-nﬂn and

ki o

PO

e S gty
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? . u{% % * for the replacement of negative and positive infinities
A -ma
of the maximum likelihood estimate.for the two extreme response

patterns, V-min and V-max , however, without going through too

o
.

tedious computations.

(VI.5) Subtest 3

We notice in Figure 3-4~1 that the square root of the test
information function for Subtest 3 decreases quickly as 0 departs
/ from the middle part of the interval, (-3.0, 3.0) . With this
subtest as the 01d Test, we find fourteen hypothetical examinees
who obtained V-min , and twelve who obtained V-max , for their

O e

response patterns. Since this 1s as large as 5.2 percent of the .
F i total number of examinees, instead of excluding them, we decided to
E i keep them and experiment with them on the alternative estimator, 36 ’ oo
; | which was introduced in the Section VI.3 . ‘ﬁ
? f With Sibtest 9 as our Old Test, we find one examinee who ;~:
E { f obtained V-min and one whose response pattern is V-max . In -
? ; this case, we excluded these two from our original datea and used -ﬁ#
E; i 498 examinees in our estimation process, since there are only two
? f and their exclusion will not change the result substantially. With [
é } all the other subtests; none of our hypothetical examinees obtained ™
i | V-nin or V-max . I
g t Table 6~5-1 presents the identification number and the .‘i
3 ; ability level for each of the fourteen hypothetical examinees who E?i
;. { obtained V-min and the twelve who obtained V-max , for Subtest 3 . y{§
? ‘ We can see in this table that, although most of these twenty-six §}
t ‘ examinees have the ability levels equal to or close to one of the "1
‘ two extreme values of 6 , -2,475 and 2.475 , there are some i
examinees, like 118 , 210 and 491 , whose ability levels are EJQ
substantially less than 2.475 1in absclute values. Tables 6-5-2 !
and 6-5-3 present the response patterns of these twenty-six %%

examinees for the ten unknown, binary test items.

' We need some modification to the estimator, however. Since
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TABLE 6-5-1

ldentiZicstion Wumber smd Ability Level of Each of the
Pourtesn Bypotheticel Examiness Who Obtained V-sin ,

! ®d of the Tvelve Vho Obtainad V-max of Bubtest 3 . |
k |
1D ° i) )
: | . 1 -2.475 491 2.025
i ; 101 -2.475 193 2.125
£ ! 201 ~2.475 493 2.125
if 401 ~2.475 294 2.175
X 2 -2.425 296 2.275
¢ '; 102 ~2.425 397 2.325
E‘» 202 ~2.425 98 2.375
i‘ 302 «2.425 198 2.375
; 303 ~2.375 199 2.425
; 4 -2.325 299 2.425
ﬁ { ; 108 -2.125 499 2.425

: 109 -2,075 300 2.475

; 210 -2.025 ‘
:‘ . 118 -1.625 )
v E
S i
3 } the square root of the test information function of Subtest 3 1s not f

in the process of estimating

: L
! i constant, we muet transform 6 to T
We recall that,

the operating characteristics of the item scores.
i with the transformed scale of ablility, the asymptotic unbiasedness
i Cl ! and the normality were used as the approximation to the conditional
distribution of the maximum likelihood estimate, ;V y glven T . We

} need, therefore, the unbiasedness of the modified estir: ‘Ar with
%6 be the estimator wita

i omdthiei it o B i

respect to 1T , instead of 6 . Let
{ respect to T . Thus we can write

2o
(= T nin for V = V-min
) ok - Tk - - Ve
(6.18) g+ T ~max for V = Vemax
- Tv otherwise

are defined by

here T and Tk
wher V-nin V-max
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TABLE 6-5-2

Identification Wumber and the Response Pattern
of the Ten Unknown, Binary Items Obtained by
Each of the Fourteen Hypothetical Examinees

Whose Response Patterns of Subtest 3 are

V-min .
Response :
m Pltptem
1l 0001000000
101 0100000000
201 0100000000
401 1000000000
2 0100000000 i/
102 0000000000
202 0000000000
302 1000000000
303 1000000000
4 1100000000
108 1000009000
109 1001000000
210 1000000000
118 1010000000
i
¥ pin " [%(Tc *ON - D Ty N “Lv-m;:11 |
VéV-min :
VyV-max !
(6.19) ’ !
B 1 ~ -1
Tk = [5(t+ 1) N, - pX T, Nl N ,
V-max 2 ¢’ H VéV-min V "HV' HV-max [
VAVemax !
In these formulas, T, , I, T, and the maximm likelihood {

estimate, ;V » can uniformly be transformed from 6, , 8 , 8

and 6, , by means of 1T = 1(6) .

P,y
* - 9

Figure 6-5~1 presents the two operating characteristics,

*
PV-min V-max
dotted curves, respectively.

are the positions of two Te

different intervals were used for (I,?) , and the results are

R T T e
e[ e W mme e i e e

(t) and P% (1) , as functions of 7, by ¢ Lid and

. . ———
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! b bk i el L Ty -
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In the same figure, also presented
's which we used separately. Eight
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TABLE 6~5-3
2 {dentificarion Musber and the Response Pattsrn
i . _‘ of the Ten Unkoown, Bivary Items Obtainad by
A ! .. Zach of the Twvelve Hypothetical Examineas
f,i. - Whose Response Patterns of Subtest 3 are
! . V-max .
k .
‘ . Response
f';{ L I Pattern
) . 491 1111111000
; _ '(. ; 193 1111111120
Lo " 493 1111111110
b ' 3 294 1111111111
b : L 296 11111111
1. 397 1111112111
3
i ﬂ - 98 1111111131
1 ~ N 198 1111101110
4 } 199 1111111311
i - 299 1111111110
} , 3 499 1111111111 :
| ; %00 1111111111 3
2 " !
: i i
2 1
! |
: g
’ b
t |
1 {
] | § 10} -
; o8t
3 o | ‘
. ]‘ { 5 08}
T 5
; '3 % as} ;
i :
¥ g2} -, 58 6,10 i
{
! 1 Qo . 1 ok " . -
[ : .40 30 -20 -0 Q0 10 20 30 40 |
\ LATENT TRAIT T d
! :
1 ‘ FIGURE 6-5-1 3
! 4
" Oparating Characteristics of V-min (S014d Line) snd :
Lo Vemsx (Dotted Line) of Subtest 3 Given As Functions ;é
§ ! of the Transformed Latest Trait <, Together with tha 1
: Critical Value, 7. , Set at Two Ditferent Positious. %
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R T,

: : shown in Tables 6-5-4 and 6-5-5 for T " 0.1203 and T, = -0.5455 ,

f respectively. It is obvious that for the first three intervals of :
f
P TABLE 6-5-4 S
, ; . R Co

! . Two Estimates , rg { and t‘.y » Obtained by Using Zach of the Eight 1

Different Intervals, (1,7) , and <t =~ 0.1203 for Subtest 3 . The Sample
Sizes, BL . Nn and N , Together with the Two Frequancies “v-u and by

i 4 Ny ooy * ATe Also Presented for Kach Cisa. :
oL . /
' . "
,f . Case 21 L 4 Vomtn | ¢ cmax Nyemin|{Mvemax| ® &y N i
E | ,
; 1 |-1.8456 | 2.0770 ] 2.9707 ] -0.6316 1 3 | 1,660 ] 1,630| 3,270 .
i‘ : 2 |=2.0521 {2.2668 | 5.8168 | 0.6564 1 10 {1,810 1,790{ 3,600 i
3 |-2.2461|2.4373 | -1.5891} 1.7311 8 19 } 1,970 | 1,930] 3,900 :
4 |~2.4273 |2.5860 | -1.8162 | 2.2439| 23 32 | 2,125 | 2,085} 4,180 i
‘ S5 |=2.5131 | 2.6516 | -2.2006 | 2.4000] 39 42 } 2,195 ; 2,1310)] 4,305 '
‘; 6 |-2.6757 12.7636 | -2.5467 | 2.6242| ®1 74 12,330 | 2,205| 4,535
» i 7 |-2.8267 |2.8095 |-2.7265| 2.7370| 145 93 | 2,455 | 2,240 ] 4,695
i 8 |-3.0000 |3.0000 {-2.8432 | 2.8858} 258 | 196 | 2,600 | 2,400| 5,000

TABLE 6-5-5

oy

Two Estimates, G; ain Gg__x » Obtained by Using Each of tha Eight

Different Intervals, (1,) , and T, = -0.5455 for Subtest 3 . The Sample
Sizes, IIL . l“ and N , Togethar with the Two Frequencies llv ~min and

.

Bl b i v

i
it { X » Are Also Pressated for Rach Case. !
i
Case b t TWemin| "V cmax Mv-ndn|MVomax] % My N .
}
! 1 |-1.8456 | 2,077 7.7098] -2.2507 1 3 {1,085 | 2,185 | 3,270 T
: 2 |-2.0521 |2.2668 {11.3745 | 0.1132] 1 | 10 [ 1,255 | 2,345 3,600 co
3 |-2.2461|2.4373 (-0.8183 | 1.4841| 8 | 19 {1,415 | 2,485| 3,900 ( ;
4 |-2.4273 |2.5860 |-1.6061| 2.0856{ 23 | 32 | 1,570 { 2,610 | 4,180 C
< 5 |-2.5131 |2.6516 |-2.0651] 2.2750| 39 | 42 | 1,640 | 2,665 4,305 .
6 |-2.6757 {2.7636 |-2.4788 | 2.5455| 81 | 74 | 1,775 | 2,760 | 4,535 {
C 7 1-2.8267 | 2.8095 |-2.6867 | 2.6865| 145 | 93 | 1,900 { 2,795 | 4,695 T
: 8 {-3.0000 | 3.0000 {~2.8224( 2.8596 258 { 196 | 2,045 | 2,955 5,000 c
. i
: L
‘ j i.‘ i
: .
L {t f
; ; . i
R i e o
-~ ‘ T
ST e e 8
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T the results are meaningless, since the two frequencies, Nv ain
and NV-max s are so small, We can also see that, as these
frequencies grow larger, the resultant estimates get closer to each

other over the two different values of Tc .

To compare these results with the largest and the smallest
finite maximum likelihood estimates for Subtest 3, the values of
;V for the fifteen response patterns in which only one item is
answered correctly, and those for the fifteen other response

patterns in which only one item is answered incorrectly, are shown
in Table 6~5-6. We can see in this table that the least finite QV

is ~2.6518 and the greatest finite ;V is 2.7683 . Ve notice

in Tables 6-5-4 and 6~5-5 that only the largest interval of =t ,
(-3.0, 3.0) , provides us with two alternatire estimates, which

are greater in absolute values than those two finite estimates.

Our selection is, therefore, -2.843 for ;G-min , and 2.885 for

TABLE 6-5-6

Fifteen Response Patterns of Subtest 3, Each of Which Consists of Yourteen
Zeros and One "1" , and the Corresponding Two Maximum 1> ~ ihood Estimstes,
ev and tV s for Each Respouse Pattern, and Anot e - of Fifteaen

Response Pstterns, Each of Which Has (m-l) L ~ud On« (n'-l)
and the Corresponding 5v and ;V for Each.

Response Pattern év ?v Respouse Pattern §v 2,

' 000000000000001 | -1.3998 | ~1.7296 222222222222221 | 2.3326 | 2.6855
000000000000010 | ~1.5206 | ~1.8562 222222222222212 | 2.3454 | 2.6800
000000000000100 | ~1.9182 | =2,2347 222222222222122 | 2.48651 | 2.7683
000000000001000 | -1.6990 | -2.0336 222222222221222 | 2.2762 | 2.6258
000000000010000 | -1,9465 | -2.2592 222222222212222 { 2.3359 | 2.6727
000000000100000 | -1.8783 | =2.1995 222222222122222 | 2.1961 | 2.5620
000000001000000 | -1.8346 | ~2,1603 222222221222222 | 2.0525 | 2.4359
000000010000000 | ~2.0033 | -2.3075 222222212222222 | 2.0810 | 2.4613
©00000100000000 | -2.0205 | -2,3218 222222122222222 | 1.9725 | 2.3627
000001000000000 | =2.1792 | -2.4483 222221222222222 | 2.0237 | 2.4098
000010000000000 | -2.0811 | -2.3714 2212222722222 | 1.7679 | 2.1437
000100000000000 | ~2.3846 | ~2.5959 222122222222222 | 2.0530 | 2.4363
001000000000000 | =~2.3887 | -2.5987 221222222222222 | 1.9407 | 2,3329
010000000000000 | ~2,3585 | -2.5782 212222222222222 | 1.7595 | 2.1555
100000000000000 | ~2.4698 | -2.6518 122222222222222 | 1.8532 | 2,2488

S PR i, i -t
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%s-max » respectively. The sample regression of §6 on 1t for
our five hundred observations turned out to be 0.998t + 0.001

(cf. RR-81-2), which is very close to the unbiasedness,

The other two alternative estimates, u*' and '

Y 1V-min 1V-max ,

' which were introduced in the preceding section, were also computed
for each of the eight intervals. These values were calculated with

respect to T , instead of & , and we obtained u%V—min - =1,7434,

j -109286. -2'0965. _2.2464, -2.3143' "'204364. -2.5402' "2.7527 ‘nd
ugv-max = 1,9980, 2.1810, 2.3457, 2.4905, 2.5551, 2.6684, 2,7171, 2.7805 ,
r for Cases 1 through 8, respectively. As the interval of T grows larger,

the resultant estimates get closer to the corresponding vaiues of ga-min

; . and %e-max + We did not use them as the substitutes for negative

' and positive infinities of the maximum likelihood estimate, however,
since the conditional unbiasednegs of our estimate is an important
characteristic in our rationale behind the methods and approaches

for estimating the operating characteristics of unknown test items.

(Vi.6) Nine Subtests As Our 01d Test !

In the first year of the present research, the original 0l1d
Test was solely used as our 0ld Test in estimating the item

; characteristic functions of the ten unknown, binary test items.

RR-78-6, out of the total eleven, which are written on the
estimation of the operating characteristics, are based upon the
original 0ld Test, while the other four research reports, RR-80-2,
RR-80-4, RR-81-2 and RR-81-3, are based upon the nine subtests of _
the original 0ld Tast {cf. Chapter 2). The original 0ld Test b
consists of thirty-five test items of three score categories each,

3
!
i Thus the first seven research reports, RR-77-1, RR-78-1 through ?;2
1
]
{
i
]
§

whose item parameters are given in Table 3~4-1 of Section III.4 ,
E with each item following the normal ogive model. Furthermore, it
i . has an approximately constant square root of the test information f
; ‘ function, 4.65 , for the interval of ability of our interest.

i ; This is an ideal situation, and it also provides us with simpler t

S methods and approaches, in which no transformation of ability ¢

is needed. This situation can be materialized easily in adaptive
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testing, which we shall observe in Chapter 7.

On the other hand, it will be meaningful to test the
robustners of our methods and approaches of estimating the operating
characteristics by using a less than ideal 0ld Test, i.e., one which
has fewer test items and a non-constant square root of the test
: information function. This experiment, if the result turns out to
T be supportive, will have a benefit of expanding the applicability
: cf our methods and approaches, since in the paper-and-pencil testing
f . situation most tests do not provide us with constant amounts of test

.

B e —
o

g , information.

? f - The selection of the test items for each of the nine subtests :

s f 'f of our original Old Test is shown in Table 3-4-1, and the square ]

g : - root of the test information function is given in Figure 3-4-1, of ‘

3 | - Section III.4 . We notice that Subtest 3 is also a subtest of -?
’ : . S-ibtest 1, and Subtest 4 is a subtest of Subtest 2, and all the '

? E f other five subtests are those of the original 0ld Test only.

é ’ . In this experimentation, Simple Sum Procedure of the

A ! Conditional P.D.F. Approach (cf. Szction V.13) with the Normal

; Approach Method (cf. Section V.9) was selected as our combination

| of a method and an approach. The main reason for this selection of
the Simple Sum Procedure is its simplicity, which does not require
; the approximation to the demsity function of T with respect to

% - ! N each item score category of each unknown test item, as Bivariate

el

[ IR |

v P.D.F. Approach does, nor the weight and the proportion which 3

Weighted Sum Procedure and Proportioned Sum Procedure need,
respectively. The main reasons why we selected Normal Approach
Method are, again, its simplicity, which requires only the first two
conditionsl moments of T , given T , and the tact that the
criterion item characteristic function had been obtained in the
Simple Sum Procedure for each of the unknown test items, and the
results obtained by the Normal Approach Method, as well as those
obtained by the Pearson System Method and the Two-Parameter Beta

§5d

B e

ik,

FONApes

§

Method, respectively, turned out to be practically identical with
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; the criterion item characteristic function (cf. Section V.13).
With each of Subtest 1, 2 and 3 as our 0ld Test, both Degree 3 and
4 Cases were applied. For the other six subtests, however, only
: ; Degree 4 Case was adopted. The reason for the exclusion of Degree
’ : 3 Case in this later research is that, in all the previous studies,
the resultant estimated item characteristic functions obtained in
Degree 3 Case turned out to be practically identical with those
obtained in Degree 4 Case.

A As we have seen in the preceding section, with Subtest 3 as

; our 0ld Test, we used the set of modified maximum likelihood

f ; estimates, Q: (s=1,2....,N) , as our basic data. With each of the
other eight subtests as our 01d Test, the set of maximum likelihood

|
! } estimates, 7, , was used.

This part of the research is partly credited to the conscientious
effort by one of the author's assistants, Paul Changas. ;

(Vi.7) Sample Linear Regression of Qs on T

8 ;

Figure 6-7~1 presents the scatter diagram of ability es

01 Originsl 01d Tust

X X , , , ,
30 20 10 00 10 2C 30
| LATENT TRAIT @
FIGURE 6~7-1

Scutter Diagram of @ . Tlotted Against 0. for

. > Our Five Hundred Bypothatical Examinees, Which
“ ' Is Based upou the Origival 0ld Teat.

v ‘
M & “ ~—
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(s=1,2,...,N) and its maximum likelihood estimate, 68 , for our

! five hundred hypothetical examinees, which are obtained upon our

: : ' 014 Test. We can see in this figure that the conditional

unbiasedness of 0 , given © , may approximately be satisfied.

ST e e
G

The sample linear regression of 6§ on 6, or the best fitted
linear function of & in the least squares sense, turned out to be
1.0046 - 0.006 , which is very close to the unbiased line, or the

oot - S

linear function which passes the origin with the slope of v.ity.

TR s e
——

Figure 6-7~2 presents the nine scatter diagrams of the
transformed latent trait, Ty (s=1,2,...,N) , and its maximum
likelihood estimate, T, , for our five hundred hypothetical
examinees, with the exception of the one for Subtest 9, in which
four hundred and ninety-eight examinees are used (cf. Section VI.S) .
_ In this figure, for Subtest 3, the modified maximum likelihood
| ! estimate, T* , is used inste.’ of the maximum 1likelihood estimate,

‘ } ';s . For convenience, we shall not repeat 'this in the rest of this ' i
’ section and in Section VI.8 , but the reader must understand this is ,
on T, for the §

g R

B T

B T s ra e

; the case. The sample linear regressions of %s
: seven of the total nine scatter diagrams are as follows.

!
8
L ’;
3 L Subtest 3: 1,012t - 0,004 ]
[ Subtest 4: 1.0037 + 0.004 i
! Subtest 5: 1.0181 -~ 0.007 i
Subtest 6:  1.01lt - 0.000 i
Subtest 7: 1.016t - 0.003 '
Subtest 8:  1.000t - 0.009 :
Subtest 9 1,009 + 0.013 é
?

We can see that, in all these cases, the sample linear regressions

are very close to the unbiasedness line, and practically

indistinguishable from it.
Examination of Figure 6~7-2 reveals, however, that the
T, glven T , may not

/ conditional normality of the distribution of
It is obvious that,

be approximately satisfied for some subtests.
as the number of test items in the Old Test decreases, the conditional

B T - .
- .M__h.n&.&m.nsx e
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'F\ distribution of T, given Tt , grows more and more discrete, with
[‘ the result for Subtest 9 as the climax, Also for some subtests

: there are some conspicuous diversions from the normality for some
' range of T , as wWe can See in the scatter diagrams for Subtests 2
; b and 4 in the vicinity of 1 0.0 . We are to see if these

E deviations from normality visibly affect the resultant estimated
E

g Subtest 1 Subtest 2
§
: i
C
; 4
; ! -
ik | k
L .f
g |
F ! pod
3 | L
] : i
: i :
; q
“‘.‘ i )
l l
3 Il E
. : o
. r i
3 ' , 5
\
' M
]
1y
{4
Scatter Diagram of T  Plotted Agsinst <t for i
Our Hypothstical Examinees , Which Is Based upon 1
Xach Subtest, For Subtest 3 , the Lstimate Is -
‘t: , Inastead of T . E
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Subtest 9
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5 %

FIGURE 6-7-2 (Continued)

Subtest 8

Subtest 6
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: item characteristic functions of the unknown binary test items.

/ : (V1.8) Polymomial Approximation to the Density Function, g(1)

v - Figure 6-8-1 presents the two polynomials of degrees 3 and 4 ,
which were obtained by the method of momente (cf. Section V.6) to
approximate the density function, g(T) , together with the

; , frequency distribution of the five hundred §. ‘s , for each of

i Subtests 1, 2 and 3 . In each of these three graphs, the resultant

|

|

|

polynomial of degree 3 is plotted by a dotted curve, and that of
degree 4 iz drawm by a so0lid curve. Approximation to the density
: function, g(T) , by a polynomial was conducted only for Degrae &4
Case for each of the other six subtests, the result of which is
shown as Figure 6-8-2. We can see in these two figures that there

NI T

P

IR

;o

%i i are varieties of different curves and histograms. They are similar .

é' 5 for Subtests 2 and 4, but they are not too close for Subtests 1 and mi
E‘ f | 3, for the latter of which the modified maximum likelihood i
ﬁ E estimate, %: » was used instead of ?s « The histogram shows -

1 : greater degrees of ups and downez as the number of test items ;;;

decreases, the result which was predictable from our observations
of the scatter diagrams in the preceding section.

i

|

; For comparison the reader is suggested to go back to Figure 4

: 4=1-2 of Section IV.1l , in which similaxr graphs are shown for the

; approximation by the polynomials of degrees 3, 4 and 5, for the five
. r hundred -és which were obtained upon the original 01d Test.
| :
{
|
(

£
A

(VI.%) Estimated Item Characteristic Functions Obtained upon
Subtests 1, 2 and 3

As before, for the purpose of illustration, we shall take
item 6 as an example. Figure 6-9-1 presents the criterion item
characteristics fimctions (cf. Section V-13) obtained upon Subtests

1, 2 and 3, which are plotted by dotted and short, dashed curves,
and dashes and dots, respectively, in comparison with the one
obtained upon the original 0ld Test and the theoretical item
characteristic function, which are shown by long, dashed and solid

A SN ENE N MR kS
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) Katimated Demsity Pumction , $(f) , Obtainsd by the
Method of Nowsuts as & Polynomial of Dagres 3 (Dotted
Curve) and & (80114 Curve), Together with tha Ralative
Fraquency Distribution of the Five Bundred ‘t; s for

Esch of Subtests 1, 2 and 3 . TFor Subtest 3, G: is
Used Imstead of ,Q. .
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ITEM CHARACTERISTIC FUNCTION

8 R R & &

-850 -40 -30 40 00 10 20730 40 50!

LATENY TRAIT O

FIGURE 6-9-1

Your Criterion Itas Charactsristic Pumctisms Obtained upos the Origimsl
Old Tast (Long, Dashed Curve), upon Subtest 1 (Dotted Curva), wpom Subtaest
2 (8hart, Dashsd Curve) and upon Subtest 3 (Dashas and Dots), Together
with the Theoretical Item Characteristic Punction,

curves. We can see that the two criterion item charscteristic
functions, which were obtained upon Subtest 3 and upon the original
0ld Test, are practically indistinguishable, and the one for
Subtest 3 {a also very closa to them. This is a common tendency
among all the ten binsry test items. In contrast to them, for the
interval of 9 , (-1.3, 1.6) , the one obtained upon Subtest 2 is
substantially different from the other three, and the fitness to
the theoretical item characteristic function 18 a litile poorer.
This i2 not the case with all the other nine binary test items,
however. In fact, salthough for items 3, 5, 6 and 7 the fitnass is
poorer for the ones obtained upon Subtest 2, the order is reversed
for items 1, 2, 4, 8 and 10 . It is interesting to note that for
items with intermediate difficuity iike {tems 5, € and 7 the
criterion item characteristic functions fit rathex poorly to the
corresponding theoretical item characteristic functions. This
result is more or less expected from the small amount of test
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information of Subtest 2 in the vicinity of 6 = 0.0 .

Figures 6-9-2 and 6-9-3 present the resultant estimated item

characteristic functions of item 6 which are based upon Subtests 1
v and 2, respectively, by dotted curves, in both Degree 3 and 4 Cases,

-
(-]

ITEM CHARACTERISTIC FUNCTION

TEM CHARACTEMSTIC FUNCTION

. LATENTY TRAIT @O
FIGURE 6-9-2

Estimated Item Charsctaristic Pumction of Item € Based upom Subtast 1 (Dotted

Curve) and the One Based upon the Original O1d Tast (Dashed Curve) Obtained by

the Stwple Sum Procedurs of the Counditiounal P,.D.Y. Apprvach with the Noxmal

Approach Mathod , in Degree 3 and 4 Casas, tn Compariscn with ths Theoretical

Itea Characteristic Punction (80114 Cutvé) and the Frequency Ratios of Those
Vho Answered Corwectly (Jagged Soltd Lime). .
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FIGURE 6-9~3

Estimated Item Chaxactartistic Punction of Jtem 6 Based upon Subtest 2 (Dotted

Curve) and the One Based ipou the Original O1d Tast {(Dashed Curve) Obtsined by

the Simple Sum Procedura of the Comditional P.D.¥. Approach with the Normal

Approach Mathod, in Degree 3 and 4 Cases, in Ceaparison with the Theorstical

Item Characteristic Function (Solid Curve) sad the Prequancy Ratios of Those
Who Answared Corzxectly (Jagged Selid Lins).

S e L, e e

together with the corresponding results obtained upon the original
0ld Test, which are plotted by dashed curves. In the same figures,
also presented are the theoretical item characteristic function of
item 6, and the frequency ratios of those who answered correctly,

BT




" 3 N oo MYk es oo T T e R T T PN CITIRTITLL L .
: . RS
b '

-126- VI-35

T T ey e

by solid curves and jegged solid lines, respectively. It is
: striking to note that these results in Degree 3 and 4 Cases are
; , practically identical, for the interval of 6 , (-2.2, 2.2) , for
| both Subtests 1 and 2 . We also notice that they are very close
oot to the corresponding criterion item characteristic functions, which
ve have observed in Figure 6-9-1. These findings are not new, but N
have been observed repeatedly before, in the results obtained upon
, | the original Old Test, The results for Subtest 1 are practically
: i identical with those obtained upon the original 0ld Test, for the ; ﬁ
t
|

AR e

interval of &, (-2.2, 2.2). These facts are true not only for
item 6, but also for each and every one of the ten binary test

e

items. ‘ ) 3

! Figure 6-9-4 presents the corresponding results for Subtest

2 when the square rcot of the test linformation function ie

B e T

approximated by three different polynomials using three

subintervals, which is shown in Figure 4-6-3 of Section IV.6 . We
can see that the resultant estimated item characteristic functions -k
L are very similar to those presented in Figure 4-6-2, in both Degree |
{ 1 3 and 4 Cases. This turned out to be true with all the other nine j
: binary test items: the result which indicates that the crude :

approximation to the square root of the test informationm by the

! single polynomial of degree 7, which is showmn in Figure 4-6-2, ;
serves just as well as the more precise one obtained by the three

4 t different polynomials.

T

Figure 6-9-5 presents the corresponding results for Subtest
3. We can see in this figure that the resultant estimated item

characteristic function obtained upon Subtest 3 is very close to
the one obtained upon the original 0ld Test, in both Degree 3 and 4
Cases. This is a common tendency among &il the ten binary test

items. The use of the wodified maximum likelihood estimate, f: »
certainly did not affect negatively the resultant estimated item

characteristic functions,

s
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(VI.10) Estimated Item Characteristic Functions Obtained upon the
Six Other Subtests

Figure 6-10-1 presents the resultant estimated item
. _ characteristic functions of 1teh 6 in Degree 4 Case, which were .
1 f ! obtained upon Subtests 4, 5, 6, 7, 8 and 9, respectively, by dotted
ET : : curves, in comparison with the one obtained upon the original 01d
? Test, the theoretical item characteristic function, and the
;” i frequency ratios of the correct answer, which are plotted by dashed
E L and solid curves, and jagged solid lines, respectively. We can see
b ‘ ~ in this figure that, up to Subtest 6, the fitness of the resultant
i estimated item characteristic function to the theoretical item

characteristic function is reasonably good, but, after that, it
This 18 a common tendency among all tha ten binary

grows flatter.

) : test items,

' ! Figure 6-10-2 presents the corres;bnding results fcxr the

other nine binary test items, which were obtained upon Subtest 6.

: We can see in this figure that the fitness of the estimated item

\ characteristi~ function is really good for each of these items.
fact, for items 1, 2 and 4 the results fit the corresponding
theoretical item characteristic function better than those

: obtained upon the original Old TJst, aud they are just as good for

f items 6, 8 and 10. Considering that Subtest 6 only contains eleven s

test items, compared with thirty-five iu the original Old Test,

this result is outstanding. We must conclude, therefore, our g

:

p—

In

R S T

Gzt L

G

combination of a method and an approach is robust over the decrease
in number of test items in our 0ld Test.

: ]

It is desirable to experiment on the other combinations of a g

method and an approach for cstimating the operating characteristics, i
than Simple Sum Proceduve of the Conditional P.D.¥. Approach with 3
J

i

i

the Normal Approach Method, which we used in the present study.

This must wait for future research, however.
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' VII Adaptive Testing
In this chapter, we shall observe adaptive testing, or
By adaptive

o tallored testing, in the context of latent trait theory.
s testing, we mean the testing situation in which test items are
selected for an individual examinee in accordance with the unknown
: ability level of the examinee, from the prearranged item pool, which

coneists of a large number of test items measuring the same ability,

j‘ .
{
‘ or abilities. Thus the search for the examinee's ability level and

f,‘.

A

’ g the search for suitable test items for him are conducted together,
aiming at estimating the examinee's ability as accurately as we wish,
without spending too much time and giving the examinees too many test

The efficlency in estimating the examinee's ability,
We can

B it N T

s items.
therefore, is the essential part of the adaptive testing.

perform adaptive testing in the form of paper-and-pencil testing, but
the most effective way may be the use of computers with screen
Latent trait theory provides us with a stromng rationale s

TN S e e

terminals.
for adaptive testing, which cannot possibly be done by classical

test theory.
3

T s oy e - e
—,

(VII.1) Addition of New Test Items to the Item Pool
As was pointed out in Section II1.4, the approaches and methods

which were observed in Chapters 3, 5 and 6, for estimating the

operating characteristics of the discrete item reaponses are most
y

useful in developing the item pool. When we start from scratch, the

first step we must take is to develop a certain number of test ftems 3
which measure the ability of our interest, to confirm their j

dimensionality, and, selecting a suitable model, or medels, to find
out the operating characteristics of these test items. In so doing,
i

we need a certain norm group of examinees to administer these core
test items to obtain the basic data, and alsoc this process includes

the elimination of unfit test items, or their modifications. After ?

this has been completed, if we wish to add more test items to our item ‘

pool, we may develop more test items and estimate their operating f

{

i

characteristics using one of our combinations of an approach and a
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_ method. This latter process can also be used in the situation where
V ' an item pool is already there and has been used for a long time.

An advantage of this situation in adaptive testing is that we
do not nasd the transformation of ability 8 tc <« , which was
described in Sections III.8 and V.3, provided that we design our
procedure suitably. This will be discussed in Sectiom VII.S.

(VII.2) Weakly Parallel Tests

; Weakly parallel tests have been introduced (Samejima, 1977bv)
: in contrast to strongly parallel tests in the context of iatont trait

theory. Two tests are strongly parasllel if:
(1) they have the same number of items, and

(2) there is a one-to-one correspondence of each item on the
; first test with one aud only one itaem on the second test with
[ ! respect to the identity of the number of item score
categories and the set of operating characteristics of

item score categories.

i
o
‘ ' In contrast to that, weakly parallel tests are any pair of tests
measuring the same ability or latent trait for which the square E

1 roots of the test information functions are identical. Thus two

weakly parallel tests may have:

=t

o i g

(1) different numbers of items, and

8.
L s

et

(2) no one-to-one correspondence between the two sets of test

e

POy

items with respect to the number of item score categories
or to the sets of operating characteristics of the item scores.

It has been pointed out (Samejima, 1977a) that in tailored
testing, or computerized adaptive testing, any number of weakly parallel
tests can be made by prearranging a certain amount of test information
and using it as the criterion in terminating the presentation of items
to individual subjects. In such procedures tvo different tem pools

are not needed, although two item pools developed for wmeasuring the same

S
B T R RN L R M. S AT R T, v A e A RO
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l ability or latent trait will serve just as well.

1 (VII.3) Use of the Amount of Test Information as the Criterion
for Terminating the Presentation of New Test Items

f It has been cammon for researchers to apply a certain degree
of convergence of the current estimate of ability obtained after each

test item has baen presented, as the criterion for terminating the
This procedure, however, will result in

C -——

f presentation of new items.
producing different levels of accuracy of estimation at different

levels of ability, or even at the same level of ability.

For the purpose of illustratiom, Figure 7-3-1 presents 10
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o ’ ]
ﬁ”o ] "inw B
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Craphic Presentation of the Change of the Locsl Maximum Likelihood Estimate After the
Presentation of Each New Item for Each of Ten Hypotheticsl Examinees. 7Two Sessions
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Triangles , Respectivaly.
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ity

. graphs, each of which displays the process of convergence of the

;V maximum likelihood estimate in a simulated tallored testing ‘
‘ situation. The ability level of each of these 10 hypothetical

; . examinees is shown by @ number on the ordinate and the horizontal

’ f line. The item pool used for this simulation etudy consists of nine :
subsets of binary test items following the normal ogive model, whose

discrimination and difficulty parameters are shown in Table 7-3-1,

!
' TABLE 7-3~1

Item Discrimination Paramster, l' , and Item
Difficulty Parameter, ht s of RBach of the Nine

Groups of Binary Test Items Usad as the Iiem
Pool in the Simulated Tailored Testing. !

e e T T

i
| [ Item
' : Group % bg %
b : 1 1.20 ~2.00
g ! 2 1.60 ~1,50
[ i 3 2.00 -1.00
] : 4 1.40 -0.50 i
k i 5 1.80 0.00 )
: | 6 1.30 0.50 :
F f 7 1.70 1.00 ‘
3 | 8 1.90 1.50 }
! 9 1.50 2.00
!
] §
! i
: It is assumed that each subset has a sufficiently large number of T
‘3
” o equivalent test items. There are two sessions for each examinee, _a
-
l which are marked with hollow circlaes and solid triangles in Figure ’?
' 7-3-1, respectively, For each examinee in each session, binary
items were selected and presented until the test information at the

currant value »f the maximum likelihood estimate had reached 25.0 .

Since the items are binary, no local maximum likelihood estimate was
For Subject 1, for ‘

! e S e O

cbtained after administration of the first item.

instance, in the first session the first local maximum likelihood

estimate was given after administration of the second item; and in

% : the second sessiocn it was obtained after administration of the fifth ?
' item. It is clear from this figure that, in some cases, the current j
. maximum likelihood estimates converged well before the test {
¥ ‘.\ i‘
K §
k- i {
ko MR T T e e L

+ g
TR T AN W i bl et g g,
SRR S T A P agie . ) T
Lo S N e et POREAE TSR R tl "
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information reached 25.0 , whereas, in other cases, they had not

converged yet by the time the test information reached 25.0 .

]

l
! Congider, for example, Subject 4 in the first session (hollow
‘ : ] circles) and Subject 1.0 in the second session (solid triangles). If

the rule is made that the presentation of new items is to be

} terminated when the shift of the current maximum likelihood estimate
3 - ) is less than 0.07 twice in succession, then this will occur after
g f R the presentation of the 9th item in the former and not until the
S » presentation of the l4th item in the latter. The corresponding
! values of test information are 13.370 and 23.137 , respectively.
The standard error of estimation, which is the inverse of the square 3

:

; root of test information, 1s 0.273 in the former and 0.208 in the
f 1 latter, i.e., approximately 76 percent of 0.273 , On the other hand,
if the rule is made that the presentation of new items is to de )

terminated when test information has reached, say, 25.0 , at that .
f ! current maximum likelihood estimate, as was the case here, the ;
| B standard error of estimation would be approximately the same for all

the examinees of different ability levels, i.e., 0.20 . If the
estimation of each examinee's ability with the same level of accuracy
1s desired, there will be no doubt that the second rule is better

& i

L

than the first rule.

i

. |

| | | ,
- .- If the same level of accuracy of estimation is unnecessary,

! as in selection, i1t will be possible to prearrange a desiyable test j

} A ]

- ‘ ' information function which is not constant for the entire range of

ability in question but has a specific curve for the speacific purpose. ;

* This test information function can then be used as the criterion for
In such a case, examinees

U NP

terminating the presentation of new items.

% of different levels of ability are measured withdifferent levels of §

- accuracy of estimation and yet the resulting selection will be §
. f‘ conducted a&s accurately as is desirable Lf the appropriate i
) - information curve is used.

The above are only two examples of many possibilities., In any

fonq

case, the use of test information functions as the criterion for
terminating the presentation of new items in tailored testing permits

b
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control of the level of accuracy of estimation to serve the purposes
of testing; it is impossible to do so if the convergence of the
current maximum likelihood estimate 1s used as the criterion. The

. adoption of the test information function as the criterionm,
r b therefore, is strongly recommended, rejecting the convergence of
{ ' the current maximum likelihood estimate, which makes the accuracy

of estimation arbitrary.

(Vil,4) Test Information Function and Standard Exrror of Estimation

ST e s o
P

! T § One of the many advantages of latent trait theory over

f | classical test theory is that the standard error of measurement is

; defined more meaningfully, as a function of the latent trait © .

1 ’ It 18 defined as the inverse of the square root of the test

' information function, and is most meaningful when the test
irformation function assumes a high enough value so that the

y ( conditional distribution of the error & , given & , isg

é | : approximately normal., When a prearranged value of the test

4 ' information function is used as the criterion for terminating the
presentation of new items in adaptive testing, however, consideration
muet be given to the relationship betwaen the test information
function and the standard error of estimation., Figure 7-4-1 presents

this relationship.

Ae can be seen in this figure, the latter is a strictly
decreasing function of the former; yet the amount of decrement in
3 the standard error of estimation is comspicuous for the initial ‘
3 : increase of the test information function. It is more or less \
stabilized, however, after the test information function reaches

20.0 . For instance, for I(8) = 6.25 the standard error of

estimation is 0.4 ; this becomes 0.2 , i.e., one-half, when

i I(8) = 25.0 . On the other hand, to make the standard error of

: estimation one~fourth of 0.4 , i.,e., 0.1 , the test information
wmust be 100.0 . This suggests that, in adaptive testing, we must
balance the increase in the number of test items with the decrease in
the standard error of estimation, and find out a suitable criterion.
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FIGURE 7-4-1

Functional Relationship between Test Information Punction and Standard
Error of Estimation.

{(VII.5) Old Test for I[tem Calibration

It should be noted that, in adaptive testing, we can prearrange
the target square root of test information, and use the function as
the criteria for terminating the presentation of new items to
individual examinees, This target function does not specify a single
subtest from the item pool, but it provides us with a set of different,
individualized subtests. If we repeat this process, we will obtain
more than one such set of individualized subtests, which are weakly
parallel to one another. We notice that, in spite of this difference,
we may use such a set, or sets, of subtests as our 0ld Test, in

estimating the operating characteristics of the discrete item
responses to new test items, with the prearranged square root of the
test information function for the interval of ability of our interest.
This is & remarkable characteristic of the approaches and methods

B R e S S S i
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developed in the present research, when they are applied to the

T T T T e ey

adaptive testing situation,

It should also be noted that, because of this characteristic,

R L o

there 18 no need for us to transform ability 6 to <t , since we

can prearrange a substantially large constant value for the target

square oot of the teat information function for our 0ld Test. The

: process of estimating the operating characteristics for new items

] becomes, therefore, much more simplified than the one we must use

: when our 0ld Test is a fixed test, since, under the ordinary

E circumstances, it is extremely difficult to develop a fixed test
which has & constent amount of test information for the ramge of

ability of our interest.

(VII.6) Adaptive Testing Using Graded Test Items

With the consideration described in ecrlier sections, a

! } hypothetical tailored testing situation was constructed, using six
different item pools. The first item poel consists of eleven types

of graded items, each of which hed four graded item scocre categories.

Each item follows the normal ogive model, which 1s given by (3.6) ,

and the three difficulty parameters, bx for x8-1,2.3 , for each of

the eleven types of graded iteme are presented in Table 7-6-1. The

T T g ot
T e e g - e
N i T B MR TR T e

TABLE 7-6-1

Three Difficulty Parsmators for Each ol the
Eleven Types of Graded Tast Items Which Are
Coammon to the Three Different Item Pools.

Itsn 2, 1 = 2 2, 3

1 ~3.0 -2,5 -2.0

2 ""205 "2.0 -155

l -2,0 -1.5 -1.0

4 "'1.5 "100 ‘0;5

5 ~1.0 =0.5 0.0

& -0.5 0.0 0.5

7 0.0 0.5 1.0

8 0.5 1.0 1.5

9 1,0 1.5 2.0 y

10 1.5 200 205 i

11 2,0 2.5 3.0 !
L)
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discrimination pérameters. ag , for these eleven types of items are

uniformly 1.0 . The second item pool also has eleven types of

graded items with the same number of item score categories and values
of the difficulty parameters, but the common discrimination parameter,
The third item pool is the same as

ag s 18 2.0 dinstead of 1.0 .
= 3.0 ., The other 3 item

the first and the second, except that ag
pools are identical to the first set of 3 item pools, except that

the items are binary items and the difficulty parameters are those

shown in the column iudicated as xg = 2 in Table 7-6-1. It is

agssumed that in each item pool, there are a substantially large number

of items of each type.

The criterion square root of the test information was set as
[1(0)11/2 = 4,65 , the same constant which was used in our original
0ld Test. This value can also be considered as the reasonable
compromise suggested in Section VII.4 , The standard error of
One hundred hypothetical }

estimation 1is approximately 0,215 .,
Their ability

subjects were used in each tailored testing situationm.
levels are ~2.475 through 2,475 with an interval of 0.05 , i.e., a
the same set of one hundred ability levels as we used before (cf.

In each pair of adaptive testing situations 4in which

Section III.3).
the same digcrimination parameter was used, the same seed number was

‘used to produce the same sequence of random numbers. The first item

presanted to every subject was item 6, which is the item with

intermediate difficulty. If the subject's ftem score was O , then the

casiest item, item 1, was presented repeatedly until an item score

other than 0 was obtained. If the subject's score on item 6 was 4 ,

then the most difficult item, item 11, was presented repeatedly until

an item score other than 4 was obtained. After that, the tentative

maximum likelihood estimate was computed, and the computer presented
an item for which the amount of test information was greatest at that
This process was repeated until the square root of the

value of 6 .
test information function at the current maximum likelihood estimate

reached the criterion, 4.65 .

it B 3 et
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Tables 7-6-2 through 7-6~4 present the frequency distributions
of the number of items needed for the hypothetical tailored testing
for individual subjects with the criterion 4.65 in each of the two
situations, for ag = 1.0 , 2.0 and 3.0 , respectively. A substantial
difference batween the two frequency distributions are observed. The
mean aumbar of items 1s 36,92 for the binary case and 27.98 for
the graded ~ase for a8 = 1.0 , indicating that ohly 75.8 percent of
the items were necessary in the graded case as compared to the binary
case. These numbers are 11,97 and 7.88 for the cases where

a8 = 2,0, and 7.38 and 4.56 where ag = 3,0 , and the
corresponding percentages are 65.8 and 61.8 for these two pairs,
raspectively. This result indicates the high efficlency of the
graded test items in adaptive testing, in preference to binary test
items. This 1is especially true when we have large values foi the

discrimination parameters.

TABLE 7-6-2

Prequancy Distribution of the Number of
Itema Used in Hypothstical Tailored

T“tm'o .' = 1.0 .

Number )
of Items Binary Graded

27 15
28 74
29 10
30
i 1
32
33
34
35
36
37
38
39
40
4
42

w
LR N WGV iy

100

g

Total

Mean 36.92 27.98
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TABLE 7-6-3

Frequency Distribution of tha Number of
Items Used in Hypothetical Tailorad

TABLE 7-6-4

Frequency Distribution of the Wumbar of
Items Used in Bypothatical Yailored

Testing. a' -2.0,

Testing. a = 3.0 .
i o’;‘?‘;::. Binary Graded o:_.;::. Binary Graded
| 7 21 3 16
| 8 70 4 15
' 9 9 5 2 66
f 10 1 6 2 3
i 11 26 7 55
| 12 54 8 36
13 10 9 4
| 14 3
| 15 1
1 16 Total 99 100
, 17
! 18 1 Maan 7.38 4,56
'; Total 96 100 }
{
[ Hean 11.97 7.86
|
’ i
i (VII.7) Bayesian vs, Maximum Likelihood Estimation in Adaptive !
i Testing ;
i As we have observed in Sections VI.l and VI.2, the use of :
|
{ ‘ a prior in ability estimation provides us with biases which we may g
|
l ; wish to avoid, 1
: 1
: I In adaptive testing, it 1is typical for researchers to use a i
\ ‘ ‘ normal density function as the prior. Figure 7-7-1 presents four 3
) functions, i.e., the standard normal density function, =n(0,1
1 " (solid line), and three avproximations to n(0,1) . Each of these
t;} | three approximations is the product of twc functioms, Pi(e) and
! ' [1-p J(0)] , which are given Ly the normal ogive functions such that ;
L. \ i
: !
1 :
- i a; (8-b,)
! ! . i i ~u2/2
5 | (7.1) P (8) = 1 e du .
. | - b
- ‘
. { and
: o i
' i
" {
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FIGURE 7-7-1
Comparison of Three Approximations with the Normal Density
Function, n(0,1) (Solid Line). These Approximations Ars the

Products of a Normal Ogive Function aud Anothar Subtractad

From Unity, Which Equal n(0,1) at 6 = 0,3 (Dotted Line),
@ = 0.6 (Broken Line) and 6 = 0.9 (Dashed Liwe),
Raspectively.

aj(e‘bj) 2
w L -u4/2
(7.2) P, (6) ..',2_.__;[“ e 1% du ,

where a, = aj and bi - —bJ . These two parameters, a, and bi ,
are 0.94810 and ~0.35454 for the function drawn by a dotted line
0.94980 and -0,.35391 for the one drawn by a

in Figure 7-7-1,
-0.35287 for the

broken or long, dashed line, and 0.95259 and
one drawn by a short, dashed line, respectively. These three
approximations are obtained by setting the product of the two
functions equal to the standard normal density function at 9 = 0.3 ,

6«0,6 and 6 = 0.9 , respectively, in addition to © = 0,0 . We
notice that these four curves, including n(0,1) , in Figure 7-7-1
ara practically indistinguishable,

We notice that the formulas in (7.1) and (7.2) are identical

with the item characteristic function in the normel ogive model. This

implies that the prior, =n(0,1) , is practically the same as the
product of the two operating characteristics of the hypothetical
binary items, i and 3 , for the response pattern, (1,0) . The
Bayes modal estimator with the prior =n(0,1) can be considered,

therefore, as the maximum likelihocod estimator, obtained from the
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response pattermn V plus two additional resyonses, 1 and O,
to the hypothetical binary itema, {4 and j . Note that these two

i v additional item responses are always 1 and O , regardless of the

521 , ‘ true ability level.

g' v In order to observe how the prior affects the resultant ability

? 3 estimation in adaptive testing, a simulation study was conducted

?- “ (RR-80~-3) by using the hypothetical item pool, which was described in

g i : Section VII.3 . We assume eleven hypothetical examinees, whose ability
£ ) levels are =2.25 , =-1.75, -1.25, =0.75 , =0.25, 0.00 , 0.50 ,

.00, 1.50, 2.00 and 2.50 , respectively. We also assume four
5 different situations, in one of which the maxiwum likelihood
estimation is applied for the ability estimation, and in the other
: three Bayes modal estimation is uged, with three different priors,
n(0.0,1.0) , u(0.0,0.8) and n(0.0,0.5) , reapectively. In the
M first situation of mawimum likelihood estimation, an item from group ]
- 5 is always chosen as the first item to present to an examinee, and,

depending upon the examinee's response to this item, the second item

+

is chosen either from group 1 or group 9. That is to say, 1if the
examinee's response to the first item is correct, then the second item
is chosen from group 9, i.e., the most difficult item group, and, 1if {

|

P W
.

it is incorrect, then the second item is chosen from group 1, the
easlest item group. The examinee will stay with the same item group
for the following items, until he fails in answering an item correctly

iheme f

i if it is group 9, and until he succeeds in answering an item

t correctly if it is group 1. Thereafter, since every current

g‘ likelihood function has a local maximum, an item from the item group ;
. whose item information functiom, 18(0) , which is defined by (3.9) , ;

is the greatest at the value of current maximum likelihood estimate
is chosen and presented next, and this will go on until the amount of
test information at the current maximum likelihood estimate reaches
or exceeds a4 certain criterion. All the responses of the
hypothetical examinses are calibrated by the Monte Carlo method.

:";—”

l“;‘l

etk e i

In Bayesian estimation, the first estimate is the modal point
of the prior. The second item is an item chosen from the item group

. |

i
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; | whose item information function, 18(0) » 18 the grentest at the
% modal point of the prior, and the third item is from the item group
: whose item information function is the greatest at the gcurrent
Bayes modal estimate, and so forth, and the pregentation of a new
o item is terminated when the amount of test information at the
current estimate of the examinee's ability has reached the same

w T

g e e

criterion used in the maximum likelihood estimation.

Figure 7-7-2 presents the results of these two ability

]
estimations, which were obtained by using the prior, =n(0.0,0.8) ,

g and without using any priors, by solid clrcles and solid triangles,
8 = 0,0 , and the prior did not

respectively. In this figure,
In contrast

interfera with the convergence of the ability estimate,

10

JC AT,

e e

00

-10

ABILTY ESTIMATES

FIGURE 7-7-2

>

Successive Maximum Likelihood Estimates (Triungles) and Bayes Modal Esgtimates
(Cixcles) in the Simulated Tailored Tasting with n(0.0,0.8) as the Prior for
8 Hypothatical Examinee Whose Ability Level is 0.00 .

to this result, Figure 7-7-3 presents another case in which 6 = -2,25 .
In this figure, substantial differences between the two processes of
the maximum likelihood estimation and the Bayes modal estimation are

observed, in the latter of which the convergence is much slower,
These two examples typically

fighting off the effect of the prior.
illustrate the bias caused by the prior.
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FIGURE 7-7-3
Successive Maximum Likeliliood Estimates (Trisngles) and Bayes Modal Estimates

(Circles) in the Simulated Tailored Testing with n(0,0,0.8) as the Prior for
s Hypothetical Examines Whose Ability Level is -2.25.
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VIII Constant Information Model

! ‘ Researchers get interested in finding out what kind of test
5. ? item provides us with a larger amount of information in comparison
. with others. They seldom pay attention, however, to the fact that
3 | there exists some constancy in the amount of item information. 1In
.o this chapter, we shall observe such aspects of inforwation functions,
introduce a new model for the binary test item, which is called
Constant Information Model, and discuss its practical implications

and usefulness in the estimation of the operating characteristics

T ety s

§ of discrete item responses.

I o

(VIII.1) Constancy of Information under the Transformation of the
Latent Trait

Let 1 be any strictly increasing transformation of ability
6 . The relationships between the two sets of information

functions, i.e., Ix (®) , 1 .(8) , Iv(e) and I(0) versus

o4
I: (v) , Ig(r) , Ig(T) and I*(T) , have been given in Section

4
II1.8 , while the original definitions of the first set of

information functions are given in Section IIX.4 ., It should be

B T o T BN Ey T g+
e ——

» ; noted that the area under the curve of the item information function, 3
3 | :
] i and that of the test information function, do change with the :
: ;
t i transformation of ability 8 to T , since there are such ¥
i i relationships that !

- T 8 de
z (8.1) I*(t) dt = I (8) —~ d6 ,
| r 8 g 8 dr
i and , 3
|
' * (3
(8.2) I*(t) dr = 1(0) o ar :
; ] 8 |

where 6 and 8 are the lower and upper endpoints of the range of

© and
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A

]

-
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o
~

(8.3)

Al
[
-}
~
@l
~

are those of the raunge of the transformed variable =< .

If we consider the integration of the square root of each

information function, however, we obtain

8

T [
(8.4) f [1%()1Y/2 dr = f (1 (1% a0 ,
T g 4

and

(8.5) j

Thus the area under the curve of the square root of the item
information function, and that of the test information function, are

unchanged throughout the transformation of the latent trait by any

i

5
[1#(x) 12 dr = j [1¢0)]%/% qo .
+]

14

strictly increasing function, 7T(6) .

We recall that ability 6 was transformed to 7t by the
polynomial given by (5.13) when we used one of the nine subtests
of the original 0ld Test, i.e., Subtests 1 through 9, as our 0ld
Test (cf. Section VI). The above fact implies that, in sov doing,
the totality of the square root of the test information function

of our 0ld Test was kept constant.

(VI1l.2) Constancy of Item Information for a Specified Model

The finding in the preceding section can be generalized further
to the constancy of the square root of the item information function
for items which follow the same model, as long as the set of operating
characteristics for an arbitrarily selected test item which belongs
to the model can produce one for any other test item which follows the
same model. To give an example, suppose that item g hae an item

characteristic function in the normal ogive model, such that

i ink

oAl Do |l kil
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a (8-b )
(8.6) P (8) = [2n]"1/2 fs B exp[-t2/2] at ,

where 8 (>0) and bg are the item discrimination and difficulty

parameters, respectively. Suppose that we wish to trausform ability
6@ to T by the linear transformation such that

-1

(8.7 T = ag(6~bg) a*

+ b*
g g ’

where

a; is an arbitrary positive constant and bg is any constant.
We can write for the item characteristic function, Pg(t) , of item

g resulting from the transformation of € to =<

(8.8) P*('c) = [2x]” -1/2 [ *( —bg) exp[-t2/2] dt .

-0
1t is obvious that P;(T) thus obtained belongs to the normal cgive
model. From the finding obtained in the preceding section, therefore,
the constancy holds for the totality of the square root of the item
information function over the transformation of € to T . Note that
this is true for any arbitrarily chosen values for ag and bg , as
long as ag is positive. Let h be any other hinary test item
which also follows the normal ogive model. We can write

00

(6-b,)
(8.9) P, (8) = [2n] 1/2 2 h exp[~t2/2] dt .
h

1f we set ag ~ a and bg - bh , then (8.8) provides us with an
identical curve with that of (8.9) . The area under the square root
of the item information functiom, [I"‘('r):lll2 , therefore, will equal
that of [I (6)]1/2 . The constancy of item information holds over
any binary test items which belong to the same model, i.e., the normal
ogive model,

For the purpose of illustration, Figures 8-2-1 and 8-2-2
present the item information functions and their square roots for
three items, all of which belong to the normal ogive model with
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b1 - b2 - h3 = 0.0 , and the Discriminstion Paramatero, 8- 1.9

(S0l1id Curve), .- 2.0 (Dotted Curve) and 8y 3.0 (Dashed
Curve), Respectivaly.
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a, = 1.0 , a, = 2.0 and a;=3.0, and by = b, = by = 0.0,

respectively. We can see that in Figure 8~2~1 the three areas are

substantially different from one another, while those in Figure 8-8-2

o are equal.

(VIII.3) Constancy of Item Information for a Set of Models

In this section, we only consider binary test items. Consider

| ! ;a set of test items which follow different models, but whose item
e '
o characteristic functions are strictly increaging in 6 , and satisfy

T TR ST T o vy e e peen L

: ? lim
1 P (8) =0

S (8.10) 2

lim

i Let h denote another, arbitrarily chosen test item which follows
{ ! a different model, which satisfies the above two conditions. The
|

transformation of 6 to 1t 1in such a way that

‘ -1
(8.11) T =P lr (0]

R N T e

provides us with the item characteristic function, P;(T) , for item
i . _ g with respect to the transformed latent trait =t , which is

E‘ E identical with Ph(e) . The constancy of item information holds,

g ‘ therefore, for item g and item h on the ability scale 6 , in
spite of the fact that they belong to different models.

2 ' Figure 8-3~1 illustrates the square roots of the item

information functions of three binary test items, g , h and jJ ,

which follow the normal ogive model, the logistic model and the g

|
! linear model, respectively. The item characteristic functions of

item h and j§ are given as follows, (

(8.12) P (8) = [1+ exp{~Da, (8-b )} ™1 = <0 <=

o |
(8.13) Pj(e) (8 Ol.j)(ﬁj uj) uj < @8 < Bj . ’,
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FIGURE 8-3--1

Square Roots of the Item Information Functions of Items gs b and j, Which Follow
the Normal Ogive Model with a = 1.0 and bs = 0.0 (Dotted Curve), ths Logistic

Model with D= 1.7 , & 1.0 and bh = 0.0 (Solid Curve) sand the Linear

Model with uj w -2.5 and BJ =« 2.5 (Dashed Curve).

The reader is directed to Chapter 3 of RR-79-1 for the relatiomships
among these three models.,
It should be noted that the same principle holds for any other

sets of models, each of which has common characteristics of its own,

as the present set of models has the strictly increasing property in
(8.10) . 1t

item characteristic functions and the satisfaction of

will be improper, however, to consider a set of models for which the

item information function is meaningless, like the type of the :
;

three~paranater logistic or nmormal ogive models, for the reason the f
i

author has pointed out (Samejima, 1973).

Exact Area under the Square Root of the Item Information
Function
i

(VIII.4)

We notice that the common area under the square root of the
item information function for all the binary test items, whose item g
characteristic functions are strictly increasing in & and satisfy ;

(8,10) , :an be obtained by integrating [18(6)11/2 for any
This area equals ™ , or approximately

arbitrarily chosen item g .
3.14159 . The following process is an example, in which the 5

-
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logistic model has been chosen,

(8.14) f__mljxhce)]”2 46 = Da, fm[exp{nah(e-bh)}]”z
{1+ exp{Dah(e-bh)}]_l a8 .

(8.15) % = [exp{Da(e—bh)}]l/z :
(8.16) ﬁ%& -2 (Dah)_l ovL
(8.17) [_:[xh(e)}”z dé = Da f:e*(ue*z) 2(Dah)"le*‘1 dek
- 2fw (wox2)"L ok = 2 tan~len |
0 0

= “ .

It will be just as easy to demonstrate it if we choose the linear

model instead of the logistic model (cf. Chapter 4, RR-79-1).

(VIII.5) Constant Information Model

To represent the type of models which satisfy the two conditions
described in Section VIII.3 , we shall consider a model which provides

us with a constant value for the square root of the item information

function for the interval of & , [0,8] . Let g denote such s

binary test item. It is obvious that the interval, [8,8] , is a

finite interval, since the area of the rectangle given by this interval

and the constant gsquare root of the item information function, C , is

a finite value, i,e., 7 . Thus we can write

(8.18) B-8= .

Thua the length of the interval of ® depends upon the constant item

information C ,

We find that the medel described by

(6.19) Pg(e) = sinz[ag(e-bg) + (n/4y)
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is the one we have looked for, if we set the parameter ag such that

5 (8.20) a = C/2 ,

with the range of 6 such that

T s -

; ; (8.21) [—ﬂag-1/4] +b g 03 [wag-l/4] +b
L
5 j Since we have
¢ ‘
5 ! 2 N
i‘ ; (8.22) Qg(O) -1~ Pg(e) = cos [ag(e—bg, + (r/&)] ,
3 ;
ﬁ\ { i and
i :
i ? :
? ; (8.23) 5g Fgl® =2 sin [ag(e-bg) + (n/4)]-
b f -b .
A ] cos [ag(e bg) + (n/4)] a
1 ) 1/2
2 2 a_ [P (0)Q (0)]
¢ - $11/2
c [Pg(B)Qg(e)l ’

LT

we obtain

1 2 “l. 2
(8.24) 1,(8) = [35 P (o) 1°{P, (8)Q, (8)] ce

P o

-
I i S v . S

that this model provides us with point

We can see from (8.19)
symmetric item characteristic functions with (bg, 0.5) as the point
of symmetry, just like the normal ogive model, the logistic model and
the linear model. The parameter b8 can be called, therefore,
difficulty parameter, just as in the normal ogive and logistic models.
that the parameter ag is proportional

It is obvious from (8.23)
to) the slope of the line tangent to Pg(e) at 6 = bg » Just as in
these two models, so it can be called discrimination parameter. The

meaning of this parameter is more obvious in (8.20), i.e., the fact
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( that the amount of item information solely depends upon the parameter
a_ .
g
; We shall call this model, which is presented by (8.19), the
\ Constant Information Model., This model has an important role in the
: estimation of the operating characteristics of item response
‘E categories, which will be described in the following section.
E‘ .
¥ ' Figure 8~5-1 presents a few examples of the item characteristic
a 10
i : §
o . b=
: £ 08
P ! =]
5 : iy
. 9
; ; 5 06
E l : 9 04
3 | L3
t <
S ! x
| ‘ o
i E
3 |
P f 00
f | A0 <30 -20
E'; i
. | =
b 3 12,0
g \ -
2
. c &0
3 - x
‘ i - ..u-.....--..-..
L{ i 00
] | 40 J30-20 -0 00 W 20 30 &0
A i
[ CATENT TRAIT &
| FIGURE 8-5-1
! Item Characteristic Functions (Uppar Crsph) and the Item Information Functions
g (Lowsr Graph) of Five Binary ltems Yollowing the Constant Information Model.
! The Item Porameters Ave: a, = 0.25. and b = 0.00 (Susller Dots),
| a - 0.50 aad bz = 0,50 (Shorter Dashas), 8- 0.75 and
[ by = 2.00 (Larger Dots), s, = 1.0 and b, = -1.5 (Louger
: Dashes), and s = 2,00 and by = 0.50 (folid lina).
i
R T e e L i o e LA R T u'um..h.mm__“ L




1 Ty

- et

B
T Tr— s 1 ey o
Rt o
T e ot vy w1 -

~161- VIIi-10
function of the Constant Information Model, together with the
; corresponding item information functions.
\ The item response information functiom, Ix (8) , in the
. Constant Information Model can be written as
« 2a 2 gec’la_(8-b )+(n/4)] = 2a_2[q ()17} > 0
i 8 B B g 8 for x = 0
(8.25) I_ (e g
X2 2 2 2 -1
‘ = 2a “ cac“[a (6=b )+(n/4}] = 2a [P (8))™* > 0
! g & 8 & & forx w1 .
g
! Figure 8-5-2 illustrates these two item response information functions
for an item with the parameters, ag = 0,25 and bg « 0,00 , together
! with the constant item information function (» 0.25) . ¥From (3.12)
70
8.0
! 80
*
e
~ &40
| 3
o)
. £ 30 ﬁ
) - i
‘ 20
10 }
’ 0.0 = i
40 3020 0 00 10 20 30 49 ]
LATENY TRAIT © 3
|
FIGURE 8-5-2 ]
iten Response Information Functions of an Item Tollowing the Constant
Information Modal, with the Paramstsrs, l' * 0.25 and b_= 0.00 , E
for x, - 0 (Dottad Curve) and for x_ = 1 (Solid Curve), Together ’
with tbe Constant Iten Information Function (Dashed Curve). i
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? | and (8.25) we can write for the response pattern information function
i , ) 'Xg % 3"1
’ - (8,26) L,e) =2 I al[p (0)] ®[Q(8)] ,
x_€V

g

! and, finally, the test information function is given by

n
(8.27) 1(8) = 4% a2

(VIII.6) Use of Constant Information Model for a Set of Equivalent
Test Items Which Substitutes for the 0ld Test

In our combinations of a method and an approach, we need 0ld
Test, or a set of test items whose operating charactersitics are
known (cf, Chapter 3). In some situations, however, we may lift
! this restriction, with the effective use of Constant Information c
P

Model,

Suppose, for developing the new item pool, a substantial
! number of test ltems are adwinistered to a substaential number of
examinees, and there exists a subset of equivalent binary items 1
among these items, In this situation, we can use this subset of i

items as the substitute for the 0ld Test.

1 ! It has been shown by Blrnboum (Birnbaum, 1968) that, when
“ _ the test conslets of n equivalent, binary items, the simple test \
score t , which is the sum total of the n binary item scores, is

a ninimal sufficient statistic for the regpouse pattexrn V . In '

. such a case, we have i}.
(8.28) t =P (0) , i

’ 1

and the maximum likelihood estimate 6§ is glven by

——
e e

) (8.29) § = Pgl(t/n) :

I L

When this common item characteristic function follows the
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Constant Information Model, we obtain from (8.19) and (8,29)
(8.30) 6= 8,7 totn™ e ) v s

It is obvious from (8.21) and (8,30) that the range of 0 is

given by

-1 N -1
8.31 - 4} +b g B + .
( ) { ma, /6] bg § [ﬂag /4] bg

We assume that these equiimleut items have a strictly increasing

item characteristic function with 0 and 1 as its two asymptotes,
As we have seen in previous sections, we can adjust the latent trait
scale in such a way that the resulting common item characteristic

function for these equivalent items follow the Constant Information
Model, which {s given py (8.19) . Then the response pattern of each

examinee with‘respect to the subset of equivalent binary items is

specified, and is sumarized in the form of teat score. The origin

and unit of the latent tralt are set more or less arbitrarily, say,
= 0,25 and b8 = 0,00 ., From the test score of the subset of

a
g
equivalent binury items, the maximum likelihood estimate of the

examinee's ability is obtained through (8.30) . The resulting set

of the maximum likelihood estimates tor all the examinees can be used

in the same way as we use the set of maxiuwum likelihood estimates

obtained from the results of the 0ld Test. The operating cheracteristics

of each of the other items can be estimated in the same way as we do

when we use the 01d Test, After this has been done, we can transform

the latent trait in whatever way we wish.

(VIII.7) How to Detect a Subset of Equivalent Binary Items

A natural question is how to detect a subset of equivalent
In empirical sciences,

binary items out of the tentative item pool.
The second

it is often difficult to obtain a sufficient evideace.

best way will be, therefore, to formulate a set of necessary evidences,

and to check our data with respect to each criterion. If we find

g

!
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out that our date satisfy all the necessary conditions thus formulated,
then we can assume that we have obtained what we wanted, until another

necessary criterion becomes available and our data fail to satisfy it.

In our situation, first of all, it is necessary, though not
sufficient, that the proportions correct should be the same value for
all the equivalent binary items, with the allowance of sampling
fluctuations. This can be checked easily, and we can find out a group
of binary items which satisgfy this condition, if there is any. It is
also necessary that the 2 x 2 contingency:tables of the bivariate
frequency distributions should be symmetric and identical among all
the pairs of equivalent binary items, within the allowance of sampling
fluctuations., This can be checked for every pair'of binary items
which have passed the firat selection, and, possibly, some items have
to be dropped. We can go ahead to the 23 contingency tables after
this step, to the 2" contingency tables, etc., if we wish.

Unlike the common belief in high discrimination power, it is
desirable that these equivalent items have a low common discrimination, in
addition to being substantisl in number, A necessary condition for this
is that the two frequencies for the response patterns (0,1) and

(1,0) , which are, theoretically, the same value if the two items are
equivalent, should be large, or compatible to the other two., This can
be checked, therefore, in the same process for checking the equivalency
of the binary items, Table 8-~7-1 illustrates two typical 2 x 2

Low Discrimination Parcmetar High Discriminstion Parameter
Item h Item h -
=0 e 1 { Total -0 = 1 | Total
Item g *n “n Itan g ‘h *n
xg =0 110 243 353 x' -0 300 53 53
x'- 1 248 399 647 x‘- 1 58 589 647
Total 358 642 1000 Total 358 642 1060

TABLE 8-7-1

Two Typical 2 x 2 Contingency Tables for a Pair of
Equivalent Items with a Common Low Discrimination
Paramster, and for Those with a Common High
Discrimination Parametar, Respectivaly

SR - B VY
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contingency tables, one of which is for a pair of equivalent binary
items which have a common low discrimination parameter, and the other
is for a pair of those which have a common high discrimination

parameter,
(VIII.8) Convergence of the Conditional Distribution of the

Maximum Likelihood Estimate to the Asymptotic < Normality
When a Test Consists of Equivalent Items

In using the generalized method, we should be awaire of a few
problems. First of all, the constant test information provided by
the subset of equivalent binary items following Constant Information
Model should be substantially large, so that the normal approximation
for the conditional distribution of 8 , given 6 , should be
acceptable, On the other hand, we need a substantially wide range
of ability 6 for which the test information is constant, in order
to make the estimation of the operating characteristics of the other
items meaningful. These two are opposing factors, as is obvious
from (8.20) and (8.21) . The solution for this problem is to use
a substantially large number of equivalent binary items, whose common

digcrimination parameter is low, as was mentioned in the preceding section.

Another problem is the effect of the range of & on the gpeed
of convergence of the conditional distribution of & , given € ,
to the normal distribution, n(e, (n~ 1/2 1)) Since the range of
is a finite interval which is given by (8.31), it should be expected
that the truncation of the conditionsl distribution makes the

0

convergence slow around the valuesg of 6 close to (-na /4)+bg and

(ra 1/4)+’b , as is 1llustrated in Figure 8-8-1. A solution for this
problem is again to use a set of equivalent binary items whose common
discrimination parameter is low, so that the range of @ {8 wide
enough to include all the examinees far inside of the two endpoints of
the interval of 6 . An alternative for the above solution is to
exclude examinces whose 0 's are close to (—11381/4)%g or

(ﬂa_l/4)+b « In the second golution, however, the number of examirees
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will be decreased and this may affect the accuracy of the estimation
of the operating characteristics. It is worth noting that the solution

for the first problem, is alsoc the solution for the second problem.

If there exist more than one subset of equivalant binary iteums
within the tentative item pool, we can make a full use of all the
subsets. We follow the process described earlier fox each subset of |
equivalent binary items, and the resultant estimated operating }

——t—— -

characteristics can be equated by appropriate transformations of the
separately defined latent traits, using, say, the least squares

RS
H .

f, ; principle, to integrate all of them into one scale.
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In order to pursue the process of convergence of the comditional
distribution of the maximum likelihood estimate, givan ability, to f ‘:
the asymptotic normality when a test consists ¢f n equivalent, : ]
binary test items, a Monte Carlo study was conducted (cf. RR-79-3}. k
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? For the common item characteristic function of the hypothetical
S i equivalent, binary items, Constant Information Model with the
: parameters,
E' : H a = 0.25
: (8.32)
. . b 0.00
: : 8" '
3 ‘ .
f ] was used, The interval of 0 for which the item information
if ' j function assumes a positive constant is given by
Lot i
i |
f ! , (8,33) -t <8< ,
L 3
? { and we have for the amount of item information
L, 5 B (8.34) 1.(e) = 0.25 .
s i ‘ ‘
SN 4
As the flxed levels of the latent trait 6 , eight positions ’
1

were Belected. ioeo’ -310 Y -2.2 » -lot‘ ? "‘0.6 'y 002 [y 1.0 »
1.8 and 2.6 . A group of one hundred hypothetical examinees were

|

i

|

| assigned to each of the eight levels of ability © , to make the
f | total number of hypothetical examinees eight hundred. There were
!

PRSPy

oy s s
L o o o

twenty hypothetical sessions of testing, and in each session ten

f equivalent, binary items were administered., An item score

xg'(* 0 or 1) was calibrated by the Monte Carlo method following

[ the Constant Information Model, After the cowpletion of each session,
the cumulative test score t was computed for each of the eight

‘ hundred hypothetical examinees. Thus after the completion of the

k-th session the full test score 48 10 x k . The waximum likelihood

. .

e

’ astimate ® was obtained by }
! : (8.35) § - Pgllt/(lOR)] | 5
| - 4 st {[£/ (100012 - ]

for each hypothetical subject, after the completion of the k-th
As @n example of slow convergence, Figure 8-8-2 illustrates

sessalon,
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Q : the resultant cumulative frequency ratios of the maximum likelihood

;E : estimatés of the one hundred hypothetical examinees of group 1 by
step functions, along with the normal distribution functions,

'1/2) » which are drawn by solid curves, after the

9, 10, 11, 12, 17, 18, 19 and 20 ,

also presented are the

g N(8,{1(®)}
completions of Sessions

Pt

£ : respectively. In the same figure,
£ corresponding norual distribution functions with the sample mean
( and standard deviation of 8 as the two parameters, by dotted curves.

We can see in this figure that the two normal distribution functions

S
'8 H
are still distinctly apart, even after all the twenty sessions.

f‘ ‘v !
14 A
Figure 8-8-3 presents the corresponding set of results for

Group 5 , as an example of fast convergence. We can see in this

f figure that the approximation is good enough even after Session 9 .
For the details of this study, the reader is directed to the research

!
S
N ; report, RR-79-3 .

J

P { :

b ’
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IX A New Family of Models for the Multiple-Choice Test Item: I

In this chapter, we shall start summarizing the ratiénale and
findings of the part of the research, a new family of models for the
multiple-choice test items, which relates to one of the main objectives
of the present study. 1In so doing, we shall introduce the study which
the author conducted in Tokyo, Japan, with the collaboration of
Japanese researchers, including Dr. Sukeyori Shiba and his group of
eductional psychologists and Dr. Takahiro Sato and his group of
educational engineers. For simplicity, in this and next chapters,

the research will be referred to as Tokyo Research.

(IX.1) Mathematical Models and Psychological Reality

Psychometricians pursue methodologies to the extent that some
specific, narrowly focused topics may become their life works. This
phenomenon is well exemplified in the large number of papers published
in Psychometrika, which are focused upon various specific topics of
factor analysis. Although it has its own merite, if we are soley
satisfied with this type of research, we may overlook a more important
aspect of research, i,e., psychological reality. Consequently, our

work may not contribute to the progress of science to a great extent.

Mathematical models have played an important role in psychology
as an sclence. The validation of mathematical models with psychological
reality has attracted less attention from researchers, however.
Needless to say, a muthematical model is nothing unless it has a sound
rationale to represent our psycholegical reality, and, consequently, we
shall be able to design and organize our research to obtain, without
distortions, meaningful findings and future directions. Researchers'
conscience preassumes the virtue of doubts. We cannot emphasize enough
that the soundness of the rationale behind any mathematical model and
its fitness to our psychological reality are by far the most important
to our research, For this reason, the author has developed various
methods and approaches for estimating the operating characteristics of
discrete item responses without assuming any mathematical forms (cf.

Chapters 3, 5 and 6). When we are not certain, ve may approach the
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subject withour assuming any mathematical models.

(IX.2) Three Parameter Logistic Model

L ' Three-parameter logistic model (Birmbaum, 1968) has been widely

; ' used for the multiple-choice test item among psychometricians and other

. researchers in mental measurement., The model is based upon the knowledge

; or random guessing principle, i.e., the examinee either knows the answer,

g or guesses randomly ard picks up an arbitrary alternative. Let vg(e)

! be the item characteristic function in the logistic model, which is
given by (8.12). The three-parameter logistic model is defined by the

item characteristic function such that

(9.1) Pg(e) - (l—cg) wg(e) + cg

where Cg is the third parameter, which is called the guessing parameter.
In spite of the popularity of the model, very few researchers have tried
to validate, or invalidate, the model with their owm data.

: It 15 common among experienced test constructors to include wrong,
' : but plausible, answers among the alternatives of a multiple-cholce item,
which are called distractors, so as not to make its corvect answer too
conspicuous and destroy the quality of the question. It is noted that

we need some higher mental processes other than random guessing to

! i recognize the plausibility ot a distractor, and to be attracted to it.

{f o It is contradictory, therefore, to apply the three-parameter normal

! ' ogive, or logistic, model for multiple-choice items with such distractors,

e o P ey SN Sy I

although many researchers seem to like the model.

S ks

i % The third parameter of the three-parameter logistic model, Cg s
! : is often called pseudo-guessing parameter, and its estimate tends to
be less than unity divided by the number of the alternatives (e.g. :
Loxd, 1968). This fact itself is the invalidation of the model, aithough
many researchers do not admit it, It is apparent that something other
than random guessing is included in our psychological reality, which

makes us choose wrong answers in preference to the correct emnswer.
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:” Some other model, or models, is desirable which fits our psychological
v reality better.

(1X.3) Tokyo Research
’ In the summer of 1979, the author spent a few weeks in Tokyo,

Japan, with the support of the Office of *aval Research, and had
The scientific wonograph

conferences with researchers in Japan.
published in 1980 (cf. Chapter 2), with the help of Dr. Rudolph J.
Marcus, Scientific Director of the ONR Tokyo Office, is based upon this
research. The researchers with whom the author had conference include
Dr. Tekahiro Sato and Dr. Sukeyowxi Shiba. The author had two more
opportunities to have conferences with them in the summers of 1980 and
1981 . Among others, Dr. Shiba an? the author started a long term
collaboration in ‘résearch in 1979 , which concerns with his word

comprehension tests, and mathematical models for the multiple~cholce
Tt will eventually incorporate the author's methods and
1

N ez e i, e

S e e

T e R e e o e

s . i

test items.
approaches for estimating the operating characteristics of the discrete

o——————
H

item responses in a large scale of empirical study,

In Section IX,4 , & brief introduction to Sato‘s research on
; . Index k will be made, Shiba's research and his word comprehension
: teats will be introducedin Sections X.1 through X.3 of the next chaptar.

T O -

ol

(1X.4) Sato's Index k

3 Let g (91,2,.,.;n1 be a-multiple-choice test item, In this

gection, however, this symbol g 1a owitted, whenever it 3s clear

that we deal with only one item, Let 1 (=1,2,.,,,m) be an alternative, !

or an option, of the wmultiple-choice item g , and Py be the probability

? with which the exeminee selects the alternative 4 . The entropy H is g

: defined as the expectation of vlogzvﬁ such that i

4 m *

! 3.,2) H= -3% p, log,p, , !

fel i 2%t

: 1

: for the set of m alternatives of item g . It is obyious from (9,2) 3

| |

! | !

4 .’ ! b
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that the entropy H is non-negative, and, 1if one of the m alternatives
is the sure event with unity as its probability, themn H~ 0 . SBato's

Index k is defined by

(9.3) k=2,

and i used g8 an index of the effactiveness of the set of m altermatives

for item g 1in the context of information theory. Since the entropy H

indicates the expected uncertuinty of the set of m events, or alternatives,
the set of alternatives is wore informative for a greater value of k .

When the probability Py is replaced by the fraquency ratio, Pi y
we can write for the estimate of the entropy such that

m
(9.4) fle-2 p, logp, ,
it B o

and for the estimate of k we have

(9.5) kw2

We notice that we can obtain the number of hypothetical, equivalent

alternatives k without using the entropy, for we have

u
-1 p, log,p

w1 1 21 m -p P,

dml dml

The quantity in the brackets of the last expression of (9.6) is a kind

of woighted geowetric mean of , . Equation (9.6) also implies that

we can use sny base for log Py s instead of 2 . VYor convenience,
hereafter we shall use ¢ as the base of log pi ; and ugse H* ingtead

of H such that
n
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which equals zero when one of tle alternatives is the sure event, and

(9.8) Kwe® 31,

and simply write log Py instead of logepi .
To find out the value of p; vhich maximizes H* , and hence
k , we define Q such that

m m

(9.9) Q=~ZXp, logp, +Al £ p,-1]
: =1 1 LR R

where A 1is Legrange's multiplier., Thus the partial derivative of
Q with respect to Py is given by

(9.10) -%%; = ~[log Py + (1/pi)pi] + A = -log py + -1 .

Setting this derivative equal to zero, we obtain

which is a constant regardless of the value of 1 , Since we have

n
(%.12) Epy=1,
im]
we obtain
(9.13) 51 «1/m .

Thus it is clear that H* , and hence k , is maximal when all the

m alternatives are équally probable, and we can write
(9.14) max, (H*) = log m

and

Dok 3. e S
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(9.15) wax.(k) = m .

Since in the present situation the m events-are alternatives,

E the values of H* ad k are affected by the difficulty level of

t . item g . Let R be the correct answer to item g , which is given
‘ a8 one of its alternatives, and Py be the probability with which

: the examinee selects the correct answer R , Figure 9-4-1 presents
2 . the relationship between the probability Py and the number of

hypothetical, equivalent alternstives k . In this figure, the area
marked by slanted lines indicates the set of k 's which are less
: than max,(klpR) and greater than max.[l/pR, min.(k[pk)] , and are
2 considered to be reasonable values of k by Sato and others. In
practice, Figure 9~4-1 is used by replacing the probability PR by

0.2
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PROBABILITY FOR CORRECT ANSWER

FIGURE 9-4-1

Relationship between the Probability with Which the Corract Answar R Is Salacted
snd -the Number of Hypothetical, Equivalent Alternatives, for Five~Choica Icems.
(Sato's Data)
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the proportion correct, PR » and the number of hypothetical,
equivalent alternatives, k , by its estimate & .

A
(IX.5) Index k* for the Validation Study of the Three-Parameter g
Logistic Model i

i

Sato's Index k takes on a high value, if every examinee in
the group has selected one of the m altermatives at random, This
fact implies that, although the index was introduced for quite an
opposite purpose and proved its usefulness, it may also be useful in
detecting the examinee's random gueseing behavior in quite a different

T Y T ey %
-

situation, i,e., the multiple-choice testing. In so doing, it will ,
be more convenient if we can modify Sato's Index k in such a way
that it is unaffected by the ability distribution of a specific .
population of examinees, and can be considered as a pure property !
of the item. With this aim in mind, we shall introduce & new index,

] i.e., Index k% ,

L TR T e

o,

Let A be the event that the examinee does not know the
answer to item g , and consider the probability space which consists
of such a subpopulation of examinees. The conditional probability,

p(1]R) , with which the examinee selects the alternative i of item

TR T
——
-

!

: 3 g in this conditional probability space is given by

f ; -1

B j. = pi[ T Py + pﬁ] i¥R

;,' | ©0.16)  p(|k) h

f i -1
| * *

. ! » pX[ T p, + p*] R i=R

| + Ry d 'R

?‘ i where pﬁ denotes the probability with which the examinee guesses
. correctly for item g . The new index, %* , is defined in terms of

thege conditional probabilities, in such a way that

v
1.

m m v
7 (9.17) k* = exp[- £ p(1|A)+log p(1]|A)] = [ T p(ilx)p(ilA)]‘l
! i=1 i=1
; It is obvious that p(i1|A) for 1¥R is proporticomal to Py » for

every examinee in the population who has selected one of the wrong
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answers does not know the answer, and consequently, he is also in the
On the other hand, examinees who have selected

4
,
;
‘
|
E:L;
i,:
3
;

subpopulation A .
the correct answer R are not necessarily in the suspopulation A,

M e

80 we can write

(9.18) pr’{ £pp o

l !
: 1 Note that, if the examinee's behavior follows the imowledge or

i f random guessing principle and the item characteristic function of the
nmultiple-choice item g is of one of the three-parameter models, p§
equals p, for i¥R , and, as the result, all the m p(1|d) 's

B -

are equal and k* « m ,
In practice, we need to use some estimates for p(i[ﬁ) 's , to
Since we have the frequency ratio, Pi s

obtain the estimate of k% .

- ke S gt R AlEC gy

e
o ._-_"M R e 2o

| We are to take the strategy of finding PR
maximal., Define fi* such that i #

: for the estimate of p, for i¥R , all we need to do is to find out

[ ? an appropriate estimste of p§ . Let P§ denote such an astimate % g
b | of p§ , and P} be such that {
: l
b ! =P, 19R ‘
" = Pk - A
) | X i=R . g i
?. | Then we can write for the estimate of p(£}R) such that
K ; ‘ ’
; . i ~ - m - 1
AL (9.20) P(L]R) = PA[ £ P*] .
, i i
) 1=1 %
! ¥ which makes k¥ %

m
(9.21) fi* = log k* = = £ (1|A) *1og H(1]R) k
i~1 :
m _11!\ m m
f - -] I P:] [ Pi'log Pz - (z Pi)-log { T p¥*}) . ] :
: s=1 im1 1=l s=1 ° ?

f 1
i Then the partial derivetive of #* with respect to Pﬁ can be f
|
! L
! ]
| ;
L :
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?
‘ written as
| (9.22) BY | [ % pa172[ § Phelog PH - ( I W) %]
9,22 - e [ T DX L Phelog P% - Ph)elog P ’
{ wa owl © hli i gul ¥ R
1
; and, setting this equal to zero, wa obtain
L ‘ (9.23) log Pt = [P 10 1P log®, ,
) . s¥R g7k
i !
! |
i ; ‘ and then
W
; ' i -
{ . ; Lz ™
. ‘ (9.24) PK= NP, s¥R .
& : : 1R
s : i
: l ) -
‘ Thus we can use (9.24) in (9,19), and, therefore, obtain p(4i|A)

' \ i through (9.20)., The estimate of the new index, k* , is given by

i
; ‘ ! (9,25) fx = exp[- Zlﬁ(ilA)°log $CLIR)] - [inlﬁ(ilA) ]
j im -

;

: A necessary, though not sufficient, condition for one of the

‘ three-purameter models to be valid 4s that k* should be equal to

! m within sampling fluctuations, regurdless of che population of

! examinees from whichk our sample happened to be selectad. If this ils
» , not the cese, we wvut eay that the three-parameter model dces not

- ! ' fit our item, i.a,, the invalidation of the model.

; (IX.6) Simulation Study on Index kk ' !
! For the purpose of illustration, a set of simulated data was ‘
{ (]

’ calibrated, using the Monte Carlo method. In this eet of data, five j

hypothetical multiple~cholce test items were assumed, aeach having
five alternatives, A, B, C, D and E, with A always as the correct
Each item is agsumed to foliow the three-parameter
in

answer.
; | normal ogive model, and i{ts paramster values are shown ’
! Table 9-6-1. A group of five hundred hypothetical examinees was 5

i
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TABLE 9-6-1

Item Discriminstion Paramater ls and
Item Difficulty Parameter b. of Each

of the Five Hypothatical, Binary Items
Following the Thres-Pexrameter Noraal
Ogive Model, with c' -« 0.2 .

Item 0' b.
b 1.0 0.
2 1.50 0.7%
3 1.00 .00
4 2.50 G.0
5 3.% 0.00

assumed, whose ability levels are placed at one hundrad equaliy apacaed
points on the ability continuum, which start with -2.475 and end
with 2,475 , in such a way that subjects 1 through 5 are placed
at 6 = -2,475 , subjects 6 through 10 are at f e -2.425 , and
80 on. For each of the five hypothetical multiple-choice items, the
response of each of the five hundred hypothetical examiness wes
calibrated according to the specified item characteristic function
with the knowledge or random guessing principle.

Table 9-6-2 prasents the frequency ratio, p; » of each of
the five alternatives, for each of the five hypothetical multiple-choice
items. We can see that sampling fluctuations are fairly large for
item 4, and to a less degree for itew 2, since the corresponding
probablility, Py s is 0.6 for the alternative A and 0.1 for each
of the alternatives B, C, D and E . In the same table, also
presented are the values of Pﬁ , which were obtained through (9.24).
Using these values in (9.21), (9.24) and (9.25), the estimates of the

and the Index k* were obtained, and are presented in
is approximately

entropy H¥*

Table 9~6~3. Since the maximal possible value of fix
1.60944 (=log m) and that of k* {¢ 5 (=m) , we can say that these
respults are sufficiently close to their respective maximal values, 1.e.,

e e rny ; eV — e
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TABLE 9-6-2
Praquency Ratio of the Subject, P1 , Who Szlected
Each of the Five Alternatives, and the Modified
Frequency Ratilo Pa for the Correct Answer A,
for Each of the Five Hypotheticual Itemc.
Alt tive :
hishins B c D E
Item
Pi .608 .086 .106 .100 .100
: vy | -098
Pi .618 .102 .080 .106 094
2] pp | .00
Pi . 600 094 .106 .108 092
3 pg | 200
P1 .606 .104 078 .130 082 4
“] pp | o 1
Pi .598 .092 .100 .104 .106
S {ep|an

TABLE 9-6-3

Intropy, ﬁ*, and the Number of Hypothetical,
Equivalent Alternatives, &% , for Each of
the Five Hypothetical Items Following the !

Three-Parameter Normal Ogive Model.

Item fix k»

1 1.60714 4.98853

2 1.60501 4.97789

3 1.60744 4.99000

4 1.59224 4.91475

5 1.60829 4.99424
|
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an exemplification of the satisfaction of one of the necessary
conditions for validating the three-parameter normal ogive model and
the knowledge or random guessing principle by our simulated data.
The fact that these results are less satisfactory for item 4 and that
the same is true, to a lesser degree, for item 2 must be due to the
sampling fluctuations, which were observed in Table 9-6-2.

For the detail of this study, the reader is directed to

ONR-Tokyo Scientific Monograph 3, Chapter 3.

(IX.7) Iowa Tests of Basic Skills

Concerning the validation of mathematical models, an empirical
study was conducted using test data provided by Dr. William
Coffman of the University of Iowa, who is also Director of
the Iowa Testing Programs, For simplicity, hereafter, we ghall call
them Iowa Data, and this part of research Lowa Study., The data
analysls of this part of the research was conducted by the persistent

effort of one of the author's assistants, Robert Trestman.

The battery of tests used here is the Iowa Tests of Basic Skills,
Form 6, Levels 9-14. These tests have been designed, constructed, and
reviged at the College of Education of the University of lowa since
1935, with the general school population in mind, and for students of

ages nine through fourteen, or grades three through nine. All
technical information in this paper has been taken from either Form 6
itself (Hieronymous and Lindquist, 1971), or its Teacher's Manual
(Iowa Basic Skills Testing Program, 1971).

Ther: are eleven tests In the battery, each of which focuses on
a different basic skill. Yor convenience, hereafter, we shall call
these separate tesi' subtests, in order to avoid the confusion which
might occur when we refer to both the total test battery and each
test in the battery. Following the Teacher's Manual, the descriptionc
and abbreviations of these eleven gubtests, together with their
administration schedule and working times, are tabulated and presented
in Table 9-7-1, All the test items are power test itews with
multiple-chcice format, with five alternative answers for the items in
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TABLE 9-7-1

Administration Seasions, Time Limits and Sub.teltl of Iowa Tests
of Bas’ic Skills.

Working
Admi;isstir:tion Tine Subtest
ession (Minutes)
First Session 17 V: Vocabulary
85 Minutes 55 R: Reading Comprehension
12 L-l: Spelling
Second Session 15 L-2: Capitalization
80 Minutes 20 L-3: Punctuation
20 L-4: Usage
30 W-1: Map Reading
Third Session 20 W-2: Reading Graphs and
85 Minutes Tables
30 W~3: Knowledge and Use of
Reference Materisls
Y Sessd 30 M-1: Mathematics Concepts
PO esston 30 M-2: Mathematics Problem
nutes Solving

Subtest L1, and with four alternatives for those in the other ten
subtests. These eleven subtests are designed to cover all major

areas of academic interest for the grades three through nine.

The numbers of test items contained by the eleven separate
subtests are 114, 178, 114, 102, 102, 86, 89, 74, 141, 136 and 96,
respectively, following the order of subtests given in Table 9-7-1.
For each of the fiv~ levels, 9 through 14, only a subset of each
subtest is administered. The standardized administration schedule
and the working time for each subtest are presented in Table 9-7-1.
For the entire test battery, the time requiréd for the administration
of each level of test is four hours and thirty-nine minutes. It is
recommended that the test be administered on four consecutive days.

In our data, only the tests of Levels 11, 12 and 13 were used.
The numbers of test items contained in these three levels of test are
461, 487 and 500, respectively. A graphical representation is made
in Figure 9-7-1, to show how these three subsets of test items in

each subtest overlap among the three levels.
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FIGURE 9-7-1

| Test Items of Each of the Zleven Subtasts of Jowa Tests of Basic
| Skills Adwinistered to Each of Levels 17, 12 apd 13 , Which Are
Represented by Shaded, Mollow, and Solad Bars, Respectively.

We notice in Figure 9-7-1 that all the test items given to
the students of Level 12 are also given to those of Level 11 or Level ;
13, or both., There are exactly one hundred test items which are l
given to all the three levels of examineee. There are 264 which are T
given to Levels 11 and 12, and 323 to Levels 12 and 13, respectively. ’
We also have 197 items which are taken by the examinees of Level 11

e {

- 2 only, and 177 by those of Level 13 only. Thus the total number of
‘ test itemy is 1,061,

(IX.8) Original and Revised Iowa Data

Data were collected in three different school systems in the .
State of Iowa, in the years 1971 through 1977. In their original
form, the total number of examinees, including both boys and girls,
is 7,581, Out of these people, 28 students took Level 9 Test aud
114 took Level 10 Test. Since these are relatively small numbers, we
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decided to exclude them from our original group of examinees. The
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other 7,439 examinees are classified into three subgroups, i.e.,
2,460 students who took Level 11 Test, 2,452 who took Level 12 Test,
and 2,527 who took Level 13 Test. Hereafter, we shall call
observations concerning these 7,439 examinees the original data.

It was found out that there are a relatively small number of
examinees who did not respond to a substantially large number of
test items. While as many as 7,010 examinees out of the total 7,439
examinees left only 49 or leés test items unanswered, there alsc are
162 examinees who did not respond to as many as 100, or more, test
items. Our raw data show there are some examinees included who
skipped an entire subtest, or more than one entire subtest. A close
examination of the original data indicates that, 1if we exclude all
the examinees who left, at least, one half of & subtest unanswered
from our total group of exzminees, tnen the number of examinees who
left 200 or more test items unanswered will bacome zero, and only

28 examinees, who omitted more than 100, but less than 200, test items,

will be included. For this reason, we have decided to exclude the
193 examinees who left.one half of a subtest, or more, unanswered
from our original group of examinees for the detailed analysis.
Hereafter, we shall call observations concerning the remaining 7,246

examinees the revised data, to distinguish them from the original data.

Table 9-8-1 presents the item fdentifications of the fifty-five
test items, i.e., 34 for Level 11, 15 for Level 12, and 6 for Level 13,

to which less than 90 percent of examinees respraded in the original

data, their percentages in the original und revised data, respectively.
We can see in this table that for mcast of these fifty-five test items
the two percentages show a vizihle improvement caused by the exclusion

of the 193 examinees. There is & substantial improvement in the
percentage of examinees who answered in one way or another, for all
the three levels, which was provided by the exclusion of the 193
examinees. Among others, we notice that the frequency of test items

vhich were answered by 99 percent, or more, of examiuees increased

from 231 to 320 for Level 11, from 319 to 350 for Level 12, and from

286 to 377 for Level 13,
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TABLE 9-8-1

IX-16

Pifty-Five Test Items of Iowa Tests of Basic Skills to Which Less Than Ninety
Percent of Examiness Responded in One of the Three Levels in the Original Data,
the Percentages of Responses in the Original Data, and Those in the Revised Data.

l\ Lavel 11 Lavel 12 Level 13
Item original | Revised | Original] Revised Original | Revised
V-66 89.1 91.4
R-)S 89.6 91.9
R-96 89.2 91.5
R-97 88.7 91.0
R-98 88.3 90.7
L1-62 89.4 91.8
1L1-63 88.3 90.7
L1-64 87.5 90,0
L1-65 86.3 88,7
11-66 84.8 87.3
11-80 89.7 90.7
11-81 . 88,9 89.9
L1-82 87.9 88.9
11-83 87.0 88.0
11-84 86.2 87.2
11-85 85.4 86.4
11-105 . ]
Wi-41 88.9 91.4 89.7 90.6 .
Wi-42 85.6 88.2
W1l=43 83.3 86.0
Wl-44 81.7 84.3
W1l-45 79.2 81.6
W1-46 76.7 79.0
Wl-47 74,7 76.9
W1-60 89.2 90.4
Wi-61 87.2 88.3
W1-62 85.2 86,3
W1-63 82.7 83.8
W1l-64 80.8 81.9
W1-65 78.4 79.4
W1-66 75.4 76.3
w1l-67 7%.2 75.2
Wl-74 88.9 90.0
W1-75 87.3 88.4
wi-76 86.2 87.2
w1l-77 85.0 86.1
wi-78 83.9 84.9
W3-69 90.0 92.3
w3-70 8%.3 91.5
W3i-71 88.8 91.0
Wi-72 87.9 90.2
w3-73 87.1 89.4
W3-74 86.8 89.0
W3-75 86.0 88.3
W3-76 84,9 82,2
Ww3-77 84,0 86.3
w3-78 83.5 85.8
w3-79 82.8 85.0
W3-80 82.3 84.5
w3-81 81.6 83.8
Wi-82 81.1 83.3
M2-52 87.9 90.0
M2-53 85.9 87.9
M2-54 83.7 8s.7
M2-69 89.4 90.3

D e e it A i s S i e EP e




-189-~ IX-17

; Table 9-8-2 presents the frequency distribution of test items

for each of the eleven subtests with respect to the percentage of
examinees who answered correctly, for each of Levels 11, 12 and 13,

for the revised data. It should be noted that, even in the revised

E ' data, these percentages correct are not independent from the positions

! of the test items in each subtest. There is a distinct tendency that

! larger numbers of examinees did not respond to items which were
presented later in each subtest. It is obvious, therefore, that,

‘ ) for these later items, the percentage for the correct answer is less

Lot ‘ than it should be in the ideally set free-response gituation. i
!

. . (1IX.9) Informative Distractor Model

T e

i - By Informative Distractor Model, we mean the family of models

. in which we assume the existence of specific information obtainable €

from separate alternative answers, including the correct answer, of

.

L e ey

each multiple~choice test item.

B e
il e

j ” TABLE 9-8-2

Fraquency Distribution of Items for Each of the Elsvan Subtests with Respect to the
Percentage of Examinees Answering Corractly. Each Interval of Percantage Is Greater
than or Equal to the Lower End and Lass than the Upper End.

] ; : Towa Revised Data, Lavel 11 {
? ) N Subtest L
Percentage V R Ll L2 13 L& Wl W2 W3 Ml Mz | Tots ]
: . 1 0.0 - 5.0 o
) i 2 5.0 - 10.0 0
y e X 3 10.0 - 15.0 0
4 15.0 - 20.0 1 2 1 4
5 20.0 - 25.0 1 1 1 1 1 1 1 7
- 6 25.0 - 30.0 1 2 1 1 4 9
’ 7 30.0 - 35.0 1 4 2 1 2 1 3 2 16 i
1 . 8 35.0 - 40.0 3 2 2 1 2 1 2 1 4 3 21 '
3 9 40.0 - 45.0 4 5 6 K ) 5 1 2 3 3 2 38
F | . 10 45.0 - 50.0 & 9 7 6 5 6 1 3 & 3 48
' ’ 1 50.0 - 55.0 & 8 3 3 & & 7 10 8 3 54
4 L 12 $5.0 - 60.0 10 5 S 2 5 4 6 3 15 3 2 60 !
1 13 60.0 - 65.0 S 4 1° 9 S S5 4 2 5 2 3 46 i
14 65.0 - 70.0 & 6 3 5 9 3 6 3 9 5 & 57
7 15 70.0 - 75.0 & 9 s 3 2 1 2 1 & 3 3 3
b 16 75.0 - 80.0 2 5 6 &4 6 1 1 1 4 2 32
: . 17 80.0 - 85.0 17 101 2 2 1 15
18 85.0 - 90.0 4 1 1 1 1 1 9
q , v 19 90.0 - 95.0 2 2 1 1 6
S i 20 95.0 -100.0 0
Total 43 T4 43 40 40 32 36 26 56 42 29 | 461
1
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Iowve Revised Data, Level 12

TABLE 9-8-2 (Continued)
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5 : ‘ described in Section X.7 , belong to this family of models. If we

succeed in developing appropriate multiple-choice test items which

i follow this type of models, then they will no longer be blurred
images of the corresponding free-response test items, but will

o provide us with additional information from the distractors which

E’,
i L free-response test items will never have.
¥

(IX.10) Equivalent Distractor Model

i In contrast to the Informative Distractor Model, Equivalent

! Distractor Model mesns the family of models in which no specific

information i8 expected from separate incorrect answers, which are

given as alternatives in the multiple-chuice test item. Thus all

the alternatives, except for the correct answer, of & given

§ multiple-choice item &re equivalent, since the information given by

: a specific alternative, or distractor, is not different from the

i one given by each remaining wrong answer. The three-parameter

‘ logistic, or normal ogive, model belongs to this family of wuodels.

E ; i In this model, all the information provided by a given wrong answer

. 2 is pure noise resulting from random guessing, and, therefore, the
alternative is equivaient with any remaining wrong answer. Note,
however, that this type of model, which is based upon the knowledge or
random guessing principle, is not the only one included by the
Equivalent Distractor Model. Suppose that the operating characteristic

' i of each wrong answer of a given multimple-choice item includes some

{ : information about the examinee's ability, but all the operating

characteristics, or plausibility curves, of the distractors are

identical. In such a case, we can say that the test item should

t belong to the Informative Distractor Model in the sense that these

! ! distractors provide us with some information concerning the examinee's

; A ability. On the other hand, we can also say that the item should

TR T T T TR e M B e AT

e i e

S D o SPGB | N el i i e+ > LYY O . mia5), ke . AR iy e i i il
N e L L s . SNy PR TS P

e p——r:

y ) belong to the Equivalent Distractor Model, since each distractor does
it ; rot have any specific information which distinguishes it from the other
; T distractors. For coanvenience, in the present paper, we shall take the

L second standpoint, defining the Informative Digtractor Model in the

Narrower sense.
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(IX.11) Index k* for the Invalidation gg.ghs Equivalent
Distractor Mcdel

It is obvious that Index k* , which was introduced in
Section IX.5 , can be used for the invalidation of the Equivalent
Digtractor Model, and even as a weak support for the Informative
Distractor Model. If Index k* turns out to be far legs than m ,
then we must reject the hypothesis that our model should belong
to the Equivalent Distractor Model. If it assumes a value close
to m, then we shall gsay that Equivalent Distractor Model may be
adequate, In both cases, however, Informative Distractor Model
stays among the possibilities.

It is noted that the traditional chi-square test with (m~2)

degrees of freedom for the goodness of fit for the frequencies of
the (m-1) wrong answers with the uniform distribution as the
theoretical distribution may serve our purpose just as well, without
using Index k* , In our pilot study, we applied it for the
original data of 7,439 examinees, The result turned out to be
such that only 23, 22 and 21 test items indicate the acceptance of
tha respective uniform distributions, or the acceptance of Equivalent
Distractor Model, for Levele 11, 12 and 13, respectively, aven if we
take as low a level of significance as 0.0005 . This comes from the
fact that our sample sizes are so large that the chi-gquare test
is very sensitive to small diversions from the hypothesized uniform
distributions. We must question, however, if such small diversions
mean anything for our purpose. If, for instance, the hypothesized
uniform distribution provides us with the probability 0.15 for
each of the three wrong answers and the true distribution gives

0.16 , 0.14 and 0.15 , respectively, then the detection of these
small deviations, i.e., 0.01 , at most, will not make a strong
hasis for the rejection of the Equivalent Distractor Model.

In contrast to the chi-square test, the estimated Index k¥
is ingensitive to the sample size, bacause the sampling fluctuation
participates in the resulting estimate only thronigh the computation

of the proportions, P, (cf. Section IX.5 ). Thus, 1if we wish to

. L PRI

-~

¢ raciaie 2k
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more or less ignore the sampling fluctuations of the proportions,
then Index k* may be adopted, and these values can be comparable
across differant sample sizes.

(IX.12) Results Obtained by Using Index k* on Iowa Data

i" ‘
ir

Table 9-12~1 presents the frequency distribution of the items
of each of the ten subtests, excluding Subtest L1, which consists of
five-alternative test items, with respect to the resultant values
of the estimated Index k* , for each of Levels 11, 12 and 13, The
corresponding result for Subtest Ll is presented, separately, as

i : Table 9-12-2, for all the three levels. We can see in Table 9-12-1
that the configurations of these frequencies are similar across the
thrae levels, with the range of the estimated Index k* , 2.25 through
4.00 , fur each level. This is also the case with Subtest L1, with
the range of the estimated Index k* , 2.25 through 4.50 , for most

l items, as is shown in Table 9-12-2. We notice in Table 9-12-1 that,
| : for each level, the mode of the total frequency distribution is the

e shralia s St a s B

P

S e e
-—

:
|
{
g
|
|
1

highest category, 3.75 through 4.00 . If we examine the frequency
‘ ' distributions of separate subtests, however, we will notice that

‘ i : there are some variations among their configurations. Above all, it
- is noted that Subtests L2, L3 and L4 have different modes from the

i . highest category, i.e., mostly either the categéry, 3.00 through

' 3.25 , or the category, 3.25 through 3.50 . This tendency is

also shared by Subtest L1, which has five-alternative multiple-choice

> ; test items, as 1s shown in Table 9-12-2,

[RVIEIW NP

e e T T

3 . Eight examples of the frequency distribution of the examinees
with respect to their choices of an answaer out of the four alternatives

ot el ok el i i i

are presented as Figure 9-12~1. These test items are selected from

the subset of 76 test items for Level 13, whose Index k* 's are 3.9
or greater, For Levels 11 and 12, there are 78 and 73 such test

e e i AN, AR i

i items, respectively. In each histogram, also drawn by a dotted line
: is the estimated proportion, Pﬁ , multiplied by the number of
’ examinees who answered the item in one way or another, or the total %

; number of examinees subtracted by the number of those who did not
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TABLE 9-12-1

Frequency Distribution of Four-Alternative Items uith Respect to Index
k* for Each of the Ten Subtests of Iowa Tests of Basic Skills. The

T T T AT N TN e B T

-
H

Range of Index k* Is Greater Than or Equal to the Lower End and Less
Than the Upper End of Each Interval, for Each of Levels 11, 12 and

Level 11
Range Subtest
of Indax k¢ 2 S T S X T R R T S T S G Total
1 1.00 - 1,25 °
2 1.25 - 1.%0 0
3 1.50 - 1.75 0
& 1.75 - 2.00 0
s 2.00 - 2.28 P
6 2.2% - 2.%0 1 2 1 4
7 2,50 - 2,75 T 2 1 1 1 1 1
s 2,75 - 3.00 3 2 ¢ 8 3 2 1 23
D) 3.00 - 3.25 6 & 1 12 8 1 2 5 3 1 $4
10 3.25 - 3.%0 3 13 8 7 42 4 1 9 4 1 62
11 3.50 - 3.78 11 13 ¢ 8 6 7 & 12 1 12 a8
12 3.75 - 4.00 1 3 1 4 3 23 16 29 27 15 1%
Total A3 74 A0 40 2 % 26 % 42 2y 418
Leval 12
Range Subtest Total
of Indax k* vV & 12 W W oWV oW WM oW
1 1.00 - 1,25 ()
2 1,25 - 1.50 0
3 1.50 - 1.75 0
4 1.76 - 2.00 0
[ 2.00 - 2.25 0
6 2,25 - 2,50 1 4 s
? 2.50 - 2,75 2 1 & 1 1 1 14
[ 2.75 - 3.00 2 4 ¢ 8 s 2 30
’ 3.00 - 3.28 4 20 ? & & 2 ¢ 6 1 S4
10 3.25 - 3.50 ¢ 9% & 10 11 & 3 1 S 70
11 3.50 - 3,75 10 18 5 11 5 6 8 1 s 10 ”
12 3.75 - 4.00 22 3 4 & & 28 11 1 23 1 n
Total 4 76 42 42 32 40 20 39 45 M I3
Lavel 13
Range Subtest Total
of Index &* v R L2 OW W oW oW W oW oW ots
1 1.00 - 1,28 )
2 1.25 - 1.5 0
3 1.56 - 1.75 0
4 1.75 - 2.00 o
5 2.00 - 2,25 | - 0
[ 2,25 - 2.%0 2 3 3
] 2.50 - 2.7% 3 ! 2 1 %
s 2.75 - 3.00 2 5 Y 4 2 2 2 24
9 3.00 - 3.2% 1 5 10 1 7 T 4 1 46
10 3.25 - 3.50 11 7 8 16 10 S 0 9 s )1
11 3.50 - 3,78 10 24 3% 11 6 7 w0 21 12 2 113
12 3.75 - 4.00 19 3 3 S 6 2% 18 18 n 1 173
Totel 46 78 43 43 32 41 M 0% 4 W 482

» vy

[ 3 e
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g

TABLE 9-12-2

’ Frequency Distribution of Five-Altermative Items of

e Subtest Ll of Yowa Tests of Basic Skille, with

! Respect to Index k* , for Levels 11, 12, and

, 13 , Respectively, 3
£

3 Range Level

g of Index k* | 11 12 13 | Total

£, 1
P | 1 1.00 - 1125 0 3
2 2 1.25 - 1,50 0

& 3 1.50 - 1.75 0

b | 4 1.75 - 2.00 0

: : 5 2,00 - 2.25 0

; 6 2,25 - 2.50 & 4 1 9

! 7 2,50 - 2,75 5 1 2 8

_ 8 2.75 - 3.00 & 4 12

v ! 9 3,00 - 3,25 2 2 8 12

} 10 3.25 - 3.50 5 11 6 22

11 3.50 - 3.75 9 71 5 21

¢ 12 3,75 - 4.00 & 5 1 20

‘ 13 4,00 ~ 4,25 5 6 4 15

£ ‘ 14 4.25 - 4,50 & 5 4 13

i 15 4.50 - 4,75 1 1

’ . 16 4.75 ~ 5.00 3 4

; Total 43 46 48 137 é
: d
: . answer the item at all. Ve can see in this figure that most of these :
L : histograms are close to rectangles, if we replace the frequency for

the correct answer by the height indicated by the dotted line in each

{
ik higtogram.

b In the total set of 227 test items, whose values of the

A -

- estimated Index k* are greater than 3.9 , we find only four tent

iteme from Subtests L2, L3 and L4, i.e., L2-58 (k*=3,95473) and

4 L3~49 (k*=3,95320) of Level 11, and L3-49 (k*=3.95658) and

' . L2-58 (k*=3.95318) of Level 12, which are actually two items shared

- f , by both Levels 11 and 12. A close examination of the contents of the

% test items of these four subtests, including Subtest L1, and their

; results of analysis reveals the following facts. '3
3 "
' (1) A1l the questions in these four language skill subtests are ;
' ! in the form of having the examinee find mistakes in spelling,
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FIGURE 9-12-1

Frequency Distribution of Examinees of Level 13 with Respact to Their Responses to Bsch of

.. Eight Test Items of Iowa Tests of Basic Skills Sampled from Thuse Whose Values of Index k*
4 are 3.9 or Greater, with the Estimated Froportior of the Examiness Guessing Correctly

(Dotted Line).

capitalization, punctuation and usage, respectively.

o

A e T A e e T 7 e N 1 e et T

(2) Unlike the test items in the other seven subtests, these

items have '"No mistakes" »5 the last alternative, and for
most items this alternative has a high frequency, even

when it is a wrong answer.
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From these facts and the sbcve results, it is obvious that
Equivalent Distractor Model is not suitable for the items of the
four subteats of language skills, including Subtest L1, which
congists of five-alterngtive test items. For these items,
Informaive Distractnr Model may be more appropriate.

Figure 9-12-2 presents similar histograms to those in Figure
9-12~1 for the frequency distributions of eight four-alternative test

. 1 items, which were selected from the subset of 9 test items whose
2.6 , for Level 13. The

Index k* 's are less than, or equal to,
corregponding numbers of test items are 7 for Level 11, and 11 for

Level 12, respectively. We can see in this figur: that these

histograms, whose frequencies for the correct answers are replaced
There

by the corresponding dotted lines, are far from rectangles.
is no reason to accept Equivalent Distractor Model for these test

T T 2 el

2 ? items.

i ! : ' (IX.13) Comparison of the Results on Cammon Test Items for Three
; D Levels of Examinees in Iows Study
:

There are certain test items which are included in all the
Their numbers are aine for Subtest V, nineteen for

S

i .

E ‘ : three levels.
Subtest R, nine for Subtest L1, ten for Subtest LZ, ten for Subtest

E L3, eleven for Subtest L4, ten for Subtest W1, six for Subtest W2 i

2

and gixteen for Subtest W3, which make the total number of test
There is

N g 5.

items shared by all tlie three levels one hr.dred.
no item which is included in all three levels for Subtests M1 and M2.

e T

i It {8 evident that, for the behavior of the test item to follow

Equivalent Distractor Model, not only the value of estimated Index i
! k* should be close to m for one level of examinees but also for all '
three levels, It will be worthwhile, therefore, to compare the )

results across the three levels for these one hundred test items which
We find that only 7

'

Sl

—

! are included in all the three levels of test.
out of the 91 four-alternative tmast items, i.e., V-61, R-88, Wl-45,

. | Wi-46, W2-44, W2-45 and W3-70, have three estimates of Index k¥ all
3.9 . If we shift this :

of which are greater than, or equal to,
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» : Test Items of Iows Tests of Basic Skills Sampled from Those Whose Valuss of Index k* are 2.6
or less, with the Estimated Proportion of the Examinees Guessing Correctly (Dotted Line). I

critical value from 3.9 to 3,8 , these seven four-alternative test
items are joined by eleven more items, i.e., V-63, V-66, R-80, R-90,
R-92, L2-58, L3-49, W1-40, W1-43, Wl-47 and W2-41 .
five-alternative test items of Subtest L1l which are comparable to

There are no ¥

these eighteen four-alternative test items.

ﬁ Figure 9-13-1 presents four examples of the sets of the thrae
- histograms for Levels 11, 12 and 13, which are similar to those in
- Figures 9-12-1 and 9-12-2, and sampled from the total nineteen shared

test items of Subtest R.

e e e e e
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It is interesting to note that some items show evidence of
differential information provided by sopnrnﬁe ﬁrong ansvers. For
exampla, alternative 4 of R-80 seems to attract students of
intermediate reading ability, while alternative 1 of the game item
appears to attract students of lower levels of ability. It is clear
that many items have one or more effective distractors, and, among
others, alternative 2 of R-86 proved to be powerful. Most histograms
have some regularities in the way the frequenciés change across the
three levels, which suggest that the examinees selected their answers

intentionally rather than by random guessing.
For the detail of the Iowa Study, the reader is directed to

the research report, RR-80-1.

(IX,14) Remarks on the Usage of Lndex k*

It should be noted that high values of Index k* can happen
in situations wheve Informative Distractor Model is perfectly legitimate.
When this happens, our information is differentiated for the separate

distractors, and yet the number of examinees who selected each distractor
This is an ideal

as their answers is close to that of each other.
situation for our purpose of mental measurement, because, not only each

distractor is informative, but also all of these distractors are well

used, with the examinees' answers distributing evenly over the distractors.
We recall Sato's Index k, which was introduced in Section IX.4, is for
this purpose, and works well in the small classroom situation where
teachers supervise their students well and there is little chance for

the students to make random guessing.

The above fact makes us realize that we must be careful before

we make conclusions from the estimated values of lndex k*. Observation

of the values of Index k* across several subpopulations of examinees of
different ability levels, like the one for Levels 11, 12 and 13 of

Towa Data which was introduced in the preceding section, 1is one of
1f

the ways of finding out the cause for high values of Index k*,
it is due to the equivalence of the distractors, then we will have
similar values of Index k* across the subpopulations; if differential
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gl ; information exists for the separate distractore, then the values of
b Index k* will differ for the separate subpopulations, provided that 1
bk : their ability differences are substantial. Another way is to compare
b ' the sample means of the ability estimate among the subgroups of

E j examinees who selected separate distractors for their unswers. If

E ' differential 1nformatiop exists, then these sample means of the

P ; ability estimate will also differentiate, while they will stay close
i i to one another if the distractors are equivalent. This was done in
Shiba's study, which will be introduced in Section X.3 of the next

P T chapter.

X With these considerations in mind, Index k* can be used f’
!
i effectively.
o |
b
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: E s X A New Family of Models for the Multiple-Choice Test Item: II

5 ; : In the preceding chapter, Index k* was introduced, and
through the work on Iowa Data we have seen that the type of models,

’ ; which are based upon the principle of knowledge or random guessing,

do not work for many multiple-choice test items. In this chapter,

can Il SR

Shiba's research on the word comprehension, and theh the new family

T T ST e S T T

of models for the multiple-choice test items, will be introduced.

i (X.1) Shiba's Word Comprehension Tests

The battery of tests used for the construction of the word

.

i i comprehension scale consists of eleven tests, Al, A2, A3, A4, A5,

. A6, J1, J2, S1, S2 and U ., Each test contains thirty to fifty-

‘ E eight multiple~choice items, each having & set of five alternatives.
These tests differ in difficulty, and each of them is designed for

e

T s T g
o

a different group of ages, ranging from six years of age to the ages

Foimy T ST e
t

’ of college students. There are subtests of items included in two
- tests, which are adjacent to each other in difficulty. For example,
b ‘ : items 37 through 56 of Test J1 are also items 1 through 20 of Test

i J2. The number of examinees used for the word comprehension scale

e . B2 e i el il |

{ coustruction varies between 412 sixth graders of elementary schools

for Test A5 and 924 second graders of senior high schools for Test
81 (Shiba, 1978).

U

The model adopted for the item characteristic function of

R e T i A TR ks N

with D = 1.7 , as the substitute for the normal ogive model. Note

cbe

|

l

|

5 )

1 ] each vocabulary item is the logistic model which is given by (8.12),
|

l that Shiba did not use the three-parameter logistic model. This is
' based upon his belief that three-parameter models are not

e B i icucaiii

{ applicable for well-developed multiple-choice items, which he has-
formed through his many experiences in test construction and

research.

-
e

( The author found Shiba's research very interesting,

j

especially in the following aspects.

(1) The word comprehension tests are very well cohstructed.

v I S e g e e g e mn ¢ e e e e -
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choosing each alternative carefully.

(2) Unlike many researchers in the United States, they have

tried to make a full use of the distractors.

F i (3) Subjects were selected frnm many different age groups.

(X.2) Subjects Used in Shiba's Research

i Each of the eleven tests was administered to a group of
subjects who belong to a single school year, except for college [E

students. Hereafter, for convenience, we shall use EL for

! elementary schools, JH for junior high schools, SH for senior high

-

schools, and CS for colleges, and add the school year after each
symbol. For instance, by SHZ we mean & group of subjects who are

[

in the second year of senilor high schools. The correspondence of

the subject groups and the tests administered is summarized as

T TEAL SR e R e IR T T T e e

follows:

. -

T e STE i e

Al for EL1 (650), A2 for EL2 (650), A3 for EL3 (546),
A4 for EL4 (617), A5 for ELS (599), A6 for EL6 (412),
J1 for JH1 (614), J2 for JH2 (758), S1 for SH1 (924),
S2 for SH2 (759), and U for CS (740).

[ [ e |
et [ Wt
w2

s -

— gy
JPS-CR -

; where the numbers in parentheses indicate respective numbers of
i 2  examinees. Note that JH3 and SH3 are not included in the dsta
’ which are the basis of the word comprehension scale construction. {f

bemtmn k

t

(X.3) Methods and Results of Shiba's Research

‘ It is assumed that, for each of the eleven groups of l y

factor solution of factor analysis is applied for the tetrachoric !1

K ! examinees, the ability distribution is normal. The principal

correlaticn matrix for each group of examinees, using the largest

absolute value of the correlation coefficient in each row, or }
column, as the communality. This step is also the process of

validating the unidimensionality of ability. Figure 10-3-1 lﬁ
i1llustrates the resulting set of eigenvaiues for Test J1 which was
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2 ! Eigenvaluas of the Corrslation Matrix of the Fifty-Five Items of 3
i .
1

Test J1, Orderad with Raspect to Their Magnitudes. (Shiba's Dats)

Qdministered to 614 first yerr junior high school students. It
turned out that the first eigenvalue is much larger than all the
other eigenvalues, and thus the unidimensionality was confirmed.
Hereafter, this first principal factor is treated as 0 .

<“M. .

s crielm

i Let p8 be the factor loading (e.g., Lawley and Maxwell, ;
5 { 1971) of the first principal factor, or 6 , for item g . The i
item discrimination parameter, ‘g ,» 1s obtained by

7

0.1 - 1-
(10.1) g og(L Pe

Let ®(u) denote the standard normal distribution function, such
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u 2
(10.2) o(u) = (2«)‘1/2f 12 g

The item difficulty parameter, b8 » 1s given by

-1 -1
. - 1."“
(10.3) bg o ( pgR) Pg N

where pgR is the probability with which the examinee answers
item g correctly. In practice, this is replaced by the frequency
ratio, P R’ to provide.us with the estimate of bg .

The eleven ability scales thus constructed are assumed to be
on the same continuum, and they are integrated into a single scale.
Thiz equating is made through the ten subsets of items, each of
which 1s shared by two adjacent tests. Let a8 and bg be the
item parameters estimated from the result of the first test, and

a* and b; be those from the result of the second test. Denoting
the two ability scales by & and 6% , respectively, we can write

)

(10.4) ag(e-bs) - a;(e*—b;) ,

since the item charagteristic functions, which follow the normal
ogive model, of the same item g on the two ability scales must
assume the same value for the corresponding values of 6 and 6% ,
Thus the functional relationship between 6 and 6% 1is given by

10.5 ok = *)0 4+ [bk- *
( ) (aglag) [ p (aglag)bgl R
which 1s linear, and the two coefficients are obtained from thesge

four parameters. In practice, we obtain as many sets of
coefficients as the number of common items, and we need to use some

type of "average” of these coefficients for the scale transformation.

Figure 10-3-2 presents the ability distributions of eleven subject
groups after such transformationswere made and the mean and the
standard deviation of the distribution of J1 are taken as the

R e xR . ol s Pt MR pn
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FIGURE 10-3-2

Estimsted Density Functions of the Twelve Groups of Exmminees, Which Are Assumed to Be Normal.
The Ability Scale Is Dafined in Such a Way that the Deneity Punction of the Fisrt Grade Group
of Junior High School (JH1) Is n{0,1) . (Shibsa's Data)

origin and the unit for the new, integrated ebility dimension.

The item characteristic function of each item on the new,
integrated scale 6 1is approximated by the logistic function, which is
given by (8.12). The maximum likelihood estimate, éj , of each
examinee's ability is obtained through the equation

n n

10.6 tapP (§,)=~ ¢
( ) 8-138 8( j) g-lag xgj

(cf. Birnbaum, 1968), where xgj is the binary item score of

individual j for item g . The item information function of

each test item, and then the test information of each test, are
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obtained (cf. Section'III.4).

The theoretical frequency distribution of test score T for

: each test and examinee group can be written as

8 x 1-

; 10.9 N I I (o) & [1r ()] B ,

i VeT u_eV g

" . 8

P |

b " where V 18 a response pattern of a vector of n i{items scores,

Y ; and T 4is the test score given by

i . n
/ (10.8) T= ¢ x ,

" ; g=1

L” i This is used for the validation of the model and assumptions

; | adopted in the process of analysis. The sample mean of the maximum
F: ; likelihood estimates & of the subgroup of examinees, who selected
: each of the five alternatives is calculated, for each item of each
; test. A tallored test of the word comprehension is constructed by .
g gelecting an appropriate subset of items from these eleven tests,

: : in such a way that an individual is directed to a next item which

| is chosen on the basis of the sample mean of 6 of the alternative

i he has selected for the present item,

The research conducted by Shiba and others includes more

T W TR T e e

PR B .. -
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. ! interesting data than were ugsed in the word comprehension scale )
construction. Table 10-3-1 pregents a part of them, in which the !
. frequency distribution of the alternative selection by the first year o
[’ 1 students of junior high schools, and the mean of the maximum ”
! ; likelihood estimate of ability for each alternative are shown for -
i‘ ? nineteen items included in both Tests J1 and J2, and administered §7
3 : . to four differeat subject groups, JH1, JH2(a), JH2(b) and JH3. 1In e
; . the same table, also presented is the discrepancy between the mean ,,1
3 1 of & for the correct answer and the lowest mean 8 for one of 3:

the four wrong answers, under the heading, "largest discrepancy.”
The correct answers are always identified as the ones which have

F ]
- -
ool i e SNl A T .




T S——-A

i )

E
t" . ~209- X~7
b
3
; TABLE 10~3-1
Mean of the Msximus Likelihood Estimstes of Ability, @ , for Each of the
X ' Five Subgroups of Subjects Selacting Different Alternatives, for Each of
i the 19 Vocabulary Test Itewms, Together with the Actual Fraquency Distri-
é butions (FRQ). The Difference batwaeen the Msan & of tha Correct Sub-
L ' : groups and the Lovest Msan 8 1s Also Presentad As Largest Discrepancy
& for Each Item., Test J1, Junioxr High School Grade 1
b
¥
; : Alternative rgast 1
{ Iten| Indices Total K
’g{- 1 2 . .3 4 5 Discrepancy i
| Maan @ 0.401 =0,476 -0.482 =0.750 =0.148 i
1 ; 37 1 g 287 50 59 9 1 | ™ .15
: Mean #§
{ 38 T
5 Mean & | -0.192 «0.091 -0.270 -0.243 0.400
' ¥ 1 mo et ms me os1 ey | 382 0.670 ,
3 - Mean § 0.071 <0.416 =~0.336 0.310 =~0.479 i
}‘ 40 1 g 6 141 96 2713 9| 573 0.789 ]
s i
. Mean & | =0.557 =1.007 =0.445 -0.456 0.254 :
4 _. 411 " ra 53 20 23 8s 392 | 373 1.261 ]
I i !
- Mean 8 0.339 -0.570 0.036 =-0.439 «0.387 | - i
{‘ ‘ 42 1 " rrq 27 21 1:1 s 97| 370 0.909 |
# 2 .
g Mean & | -0.512 0.376 «0.572 -0.245 <0.393 .
E. “ 1 " ma 26 308 98 &7 7| 512 0.948 !
| f Mean & | «0.293 -0.547 -0.595 0.271 =0.318 ’
; 4 | g 119 7 1% 333 36 | 569 0.866 11
; . I Mean 8 | <0.638 -0.412 -0.636 0.395 -=0.593 3
; . 43 1 g 51 25 123 346 23 | 568 1.033 :
; : Mesn @& 0.444 =0.741 =0.325 -0.428 ~0,534 "
’ : 46 | Trrg 29 46 44 164 18 | 568 1.185 {
: Mean & [ -0.261 ©.270 -0.078 -0.426 =-0.101
2 , 47 1 g 6 224 138 $3 65 | 569 0.696 ]
b | Mean 6 | -0.129 =0.024 «1.013 -0.467 0.412 A
4 ! 48 1 rRq 81 100 58 67 258 | 366 1.425
E e Mean 8 | -0.339 -0.390 -0.284 <0.464 0,309
L 491 e s 0w 410 a5 | 5713 0.773 i
1 ' Mean & 0.349 +0.256 =-1.015 =0.317 -0.38%
30 | Terq 308 46 35 86 96 | 571 1.364
B Mean & ]| -0.137 -0.640 -0.077 ~0.136 0.429
i 51| Temg 89 82 75 113 201 | 360 1.069
k]
| i Mean 8 | -0.219 0.291 -0.110 -0.608 -0,095
: 52 1 rrq 16 235 80 % 100 | 965 0.899
; : Mean & | ~0.071 ~0.030 -0.453 0,527 =0.241
&' | 53 1 " mq 163 51 3% 13 s | 12 0.980
3 ’ Mean @ 0.132 -0.060 -0.084 «0.037 -0.283
i 41 mg 182 1 100 142 5 | 36! 0.415
; Mean & 0.114 =0.278 0,172 -0.533 (0.690
f 55 1 Terq 27 722 317 29 126 | 57 1.223
Mean 6 | -0.460 -0.113 ~0.412 0.742 0.015
_ 56 1 Trrq 104 100 15 141 a1 | 7 1.202
|
»
i
|
y !
B e O : e
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the highest means of 8 .

(X.4) Distractors As Resources of Information

Shiba's research is based upon his belief in the usefulness

§ b of distractors as important resources of information, in addition
to the correct answer. This i3 the same belief which the author
5 ‘ i has kept in mind for many years (cf. Sameji-v, 1968), As far as we
f ; score the multiple—choice test item correct or incorrect and treat
E it as a binary item, it can never surpass the free-response test
? T item, but will always stay as a "blurred" image of the free-response

test item, owing to the noise caused by the examinee's guessing
: behavior, etc. If we make the full use of the information given by
! distractors, however, then the multiple-choice test item will have

3 |
[ : the merit of its own, and can even be more informative than ths
; free-response test item,

t

t

| It is researchers' responsibility to increase the efficiency
(O in mental measurement. To ignore whatever legitimate information
i we can obtain from our research data is against this principle. If
distractors can serve for this purpose, we should certainly not to
! stay with models like the three-parameter logistic model, in which
; all the wrong ansvers given as alternatives in the multiple-choice
R i test item are treated as being equivalent, without any information
of their own. It will be worth our effort to investigate Informative

b j
: g Distribution Model rather than to stay with the Equivalent
. Distractor Model (cf. Sectioms IX.9 and IX.10).

i (X.5) Mathematical Models in Physics and in Psychology

e L - o v "
I e o AT Lt i e MR v e il o Bl ek it

The role of mathematical models in any science may be to

3 i describe its reality following an appropriate rationale. We muct

A : recognize, however, some difference between the role of mathematical
[ § models in pure natural sciences, like physics, and that in

ST

psychology. This difference comes from the fact that, while in

physics it is impossible or meaningless to change natural phenomena

s

to which objects react, in psychology many phenomena to which
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persons react are also made by persons, and it is quite legitimate to

change them for good causes.

The latter logic is directly applicable to models for the
multiple-choice test item, An important implication is that we
t ' may be able to do better than supplying mathematical models for

5 ' the existing test items rather passively. If we conceilve of some

y

A mathematical models which, in theory, will enhance the efficiency
in mental measurement, we shall be able to advise test constructors

! to develop the types of multiple-choice test items which follow our

i models, instead of accepting whatever test items they produce. We
can also adjust the pressure and its directions which are put upon
examinees, by changing our instructions appropriately. To give an

' : example, we can effectively discourage our examinees to guess, OT

T T 2 T T W T A

to skip items.

- T Ema

i _ (X.6) Normal Ogive Model on the Graded Response Level and Bock's
Multinomial Model

g : t Normal ogive model, which was originally introduced as a ;
b : model for & bimary, free-response test item, has been expanded to

. ! fit a more general case, in which an item is graded into more than ?
; two item score categories (Samejima, 1969, 1972). Bock has

E . proposed a multinomial model (Bock, 1972), for the multiple~choice

% : test itemn, It has been pointed out (Samejima, 1972) that, although ﬂ

D

f Bock's model was originally developed for nominal categories, i.e.,

ST

' ‘ the categories which are not ordered among themselves, it can be

considered as a model in the heterogeneous case of the graded

T R

response level,

Let g be a multiple-choice item, h , 3 or k be one of
| 3
its mg alternatives, and th s Xig or ng be the response
tendency for the alternative, h , 1 or k . When any two

alternatives, h and k , are compared alone, the probability :ith
which h 1is chosen in preference to k 1s assumed to be a function
i of ability 6 , and is denoted by nhk(e;g) . Thus we can write

T AR TS S S| il e kT o

e
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(10.9) ﬂhk(e;g) + nkh(e;g) -1

e e

v When the comparison is made among us (32) alternatives, the
conditional probability with which the alternative h 4is chosen
in preference to all the other (mgfl) alternatives, given 9 , is

' : denoted by Ph(e;g) , and we have

e s .

| n
| (106.10) 8 P, (8;8) = 1 .
h=1

el

v |
t » We shall define a variable th;g , such that

5' f (10.11) Xokig = Fng = Fkg

i.e., the difference between the two response tendencies, xhg and

R

Hereafter, for simplicity, we shall drop the subscript g , :

whenever it is clear that we are dealing with only one multiple-

! ‘ choice item. Thus, in such a case, whk(e) is used for uhk(e;g) .

f i ‘
xhk for th;g , and so forth, !

In the multinomial model, it is assumed that; 1) the ,
conditional distribution of Xk » given 6 , is normél, with !
uk(e;g) , Or uk(e) , and ok(e;g) , 0T ok(e) , 8s the two o
5 | parameters; 2) Xk's are conditionally, mutually independent, given { !
] : 8 ; und 3) the ratio of the probabilities with which the two
E alternatives are chosen, respectively, is invariant for the set of
i alternatives among which the two alternatives are compared. Thus

e e

IR e

for the third assumption we can write

(10.12) Ph(e)/Pk<e) - nhk(e)/vkh(e) 5

From the first two of these assumptions, it is devrived that
the conditional distribution of xhk » given 8 , is also normal,




